Coalitional Federated Learning: Improving Communication and Training on Non-IID Data With Selfish Clients

被引:10
|
作者
Arisdakessian, Sarhad [1 ]
Wahab, Omar Abdel [1 ]
Mourad, Azzam [2 ]
Otrok, Hadi [3 ]
机构
[1] Polytech Montreal, Dept Comp Engn & Software Engn, Montreal, PQ H3T 1J4, Canada
[2] Lebanese Amer Univ, Dept Comp Sci & Math, Beirut 11022801, Lebanon
[3] Khalifa Univ, Dept EECS, Abu Dhabi 127788, U Arab Emirates
基金
加拿大自然科学与工程研究理事会;
关键词
Servers; Federated learning; Training; Data models; Computational modeling; Games; Convergence; Client selection; communication efficiency; federated learning; non-IID data; security; selfish client;
D O I
10.1109/TSC.2023.3246988
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this article, we propose a new paradigm of Federated Learning (FL) for Internet of Things (IoT) devices called Coalitional Federated Learning. The proposed paradigm aims to address the challenges of (1) non-independent and identically distributed (non-IID) data across clients; (2) communication overhead due to the large number of messages exchanged between the server and clients; and (3) selfish clients that seek to obtain the latest global models without efficiently contributing to the training of the FL model. Our novel paradigm consists of three main components, i.e., (1) client-to-client trust establishment mechanism that relies on subjective and objective sources to enable clients to establish credible trust relationships toward one another; (2) trust-enabled coalitional game to enable clients to autonomously form harmonious coalitions of FL trainers; and (3) coalitional federated learning in which multiple local aggregations take place at the level of each coalition to mitigate the problems of non-IID data and communication bottleneck. Extensive experiments suggest that our solution outperforms both the standard vanilla FL approach and one state-of-the-art trust-based FL approach in terms of increasing the accuracy of the global FL model and decreasing the presence of selfish devices participating in the training.
引用
收藏
页码:2462 / 2476
页数:15
相关论文
共 50 条
  • [11] FedPD: A Federated Learning Framework With Adaptivity to Non-IID Data
    Zhang, Xinwei
    Hong, Mingyi
    Dhople, Sairaj
    Yin, Wotao
    Liu, Yang
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2021, 69 (69) : 6055 - 6070
  • [12] Learning Critically: Selective Self-Distillation in Federated Learning on Non-IID Data
    He, Yuting
    Chen, Yiqiang
    Yang, XiaoDong
    Yu, Hanchao
    Huang, Yi-Hua
    Gu, Yang
    IEEE TRANSACTIONS ON BIG DATA, 2024, 10 (06) : 789 - 800
  • [13] Federated learning on non-IID data: A survey
    Zhu, Hangyu
    Xu, Jinjin
    Liu, Shiqing
    Jin, Yaochu
    NEUROCOMPUTING, 2021, 465 : 371 - 390
  • [14] FedGC: Federated Learning on Non-IID Data via Learning from Good Clients
    Ji, Xu
    Wu, Hao-Tian
    Cui, Ting
    Zhang, Yiqun
    Xu, Lingling
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2024, PT 1, 2025, 15031 : 181 - 194
  • [15] IOFL: Intelligent-Optimization-Based Federated Learning for Non-IID Data
    Li, Xinyan
    Zhao, Huimin
    Deng, Wu
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (09): : 16693 - 16699
  • [16] Training Keyword Spotting Models on Non-IID Data with Federated Learning
    Hard, Andrew
    Partridge, Kurt
    Nguyen, Cameron
    Subrahmanya, Niranjan
    Shah, Aishanee
    Zhu, Pai
    Moreno, Ignacio Lopez
    Mathews, Rajiv
    INTERSPEECH 2020, 2020, : 4343 - 4347
  • [17] FedSea: Federated Learning via Selective Feature Alignment for Non-IID Multimodal Data
    Tan, Min
    Feng, Yinfu
    Chu, Lingqiang
    Shi, Jingcheng
    Xiao, Rong
    Tang, Haihong
    Yu, Jun
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 5807 - 5822
  • [18] Digital Twin-Empowered Federated Incremental Learning for Non-IID Privacy Data
    Wang, Qian
    Chen, Siguang
    Wu, Meng
    Li, Xue
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2025, 24 (05) : 3860 - 3877
  • [19] Reschedule Gradients: Temporal Non-IID Resilient Federated Learning
    You, Xianyao
    Liu, Ximeng
    Jiang, Nan
    Cai, Jianping
    Ying, Zuobin
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (01) : 747 - 762
  • [20] Improving Accuracy and Convergence in Group-Based Federated Learning on Non-IID Data
    He, Ziqi
    Yang, Lei
    Lin, Wanyu
    Wu, Weigang
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2023, 10 (03): : 1389 - 1404