Detecting Multi Thoracic Diseases in Chest X-Ray Images Using Deep Learning Techniques

被引:1
|
作者
Quevedo, Sebastian [1 ,2 ]
Dominguez, Federico [1 ]
Pelaez, Enrique [1 ]
机构
[1] Escuela Super Politecn Litoral ESPOL Univ, Elect & Comp Sci Engn Dept, Campus Gustavo Galindo km 30-5 Via Perimetral, Guayaquil, Ecuador
[2] Univ Catolica Cuenca, Cuenca, Ecuador
关键词
D O I
10.1109/ICPRS58416.2023.10179041
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This doctoral proposal introduces a novel method for detecting and diagnosing various thoracic diseases in chest images using advanced deep-learning approaches. The research aims to establish a powerful and effective technique for promptly recognizing multiple pathologies in chest radiographs, which holds significant implications for patient outcomes and healthcare resources. Additionally, the study investigates the potential benefits of data augmentation, transfer learning strategies, and multimodal data integration to enhance the proposed approach's performance and adaptability.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Deep Learning Approaches for Detecting COVID-19 From Chest X-Ray Images: A Survey
    Alghamdi, Hanan S.
    Amoudi, Ghada
    Elhag, Salma
    Saeedi, Kawther
    Nasser, Jomanah
    IEEE ACCESS, 2021, 9 : 20235 - 20254
  • [32] Deep Learning Approaches for Detecting COVID-19 from Chest X-Ray Images: A Survey
    Alghamdi, Hanan S.
    Amoudi, Ghada
    Elhag, Salma
    Saeedi, Kawther
    Nasser, Jomanah
    Alghamdi, Hanan S. (hsaalghamdi@kau.edu.sa), 1600, Institute of Electrical and Electronics Engineers Inc. (09): : 20235 - 20254
  • [33] Lightweight deep learning models for detecting COVID-19 from chest X-ray images
    Karakanis, Stefanos
    Leontidis, Georgios
    COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 130 (130)
  • [34] Deep Learning Models to Predict Fatal Pneumonia Using Chest X-Ray Images
    Anai, Satoshi
    Hisasue, Junko
    Takaki, Yoichi
    Hara, Naohiko
    CANADIAN RESPIRATORY JOURNAL, 2022, 2022
  • [35] Diagnosing heart failure from chest X-ray images using deep learning
    Matsumoto, T.
    Kodera, S.
    Shinohara, H.
    Kiyosue, A.
    Higashikuni, Y.
    Akazawa, H.
    Komoro, I
    EUROPEAN HEART JOURNAL, 2020, 41 : 1201 - 1201
  • [36] Pneumonia detection in chest X-ray images using an ensemble of deep learning models
    Kundu, Rohit
    Das, Ritacheta
    Geem, Zong Woo
    Han, Gi-Tae
    Sarkar, Ram
    PLOS ONE, 2021, 16 (09):
  • [37] Diagnosing Heart Failure from Chest X-Ray Images Using Deep Learning
    Matsumoto, Takuya
    Kodera, Satoshi
    Shinohara, Hiroki
    Ieki, Hirotaka
    Yamaguchi, Toshihiro
    Higashikuni, Yasutomi
    Kiyosue, Arihiro
    Ito, Kaoru
    Ando, Jiro
    Takimoto, Eiki
    Akazawa, Hiroshi
    Morita, Hiroyuki
    Komuro, Issei
    INTERNATIONAL HEART JOURNAL, 2020, 61 (04) : 781 - 786
  • [38] Identification of COVID-19 with Chest X-ray Images using Deep Learning
    Khandar, Punam
    Thaokar, Chetana
    INTERNATIONAL JOURNAL OF NEXT-GENERATION COMPUTING, 2021, 12 (05): : 694 - 700
  • [39] COVID Pneumonia Prediction Based on Chest X-Ray Images Using Deep Learning
    Khare, Akshat
    Patel, Pranjal
    Sankaranarayanan, Suresh
    Lorenz, Pascal
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2022), 2022, : 2580 - 2585
  • [40] Classification of Lung Chest X-Ray Images Using Deep Learning with Efficient Optimizers
    Asaithambi, A.
    Thamilarasi, V.
    2023 IEEE 13TH ANNUAL COMPUTING AND COMMUNICATION WORKSHOP AND CONFERENCE, CCWC, 2023, : 465 - 469