Detecting Multi Thoracic Diseases in Chest X-Ray Images Using Deep Learning Techniques

被引:1
作者
Quevedo, Sebastian [1 ,2 ]
Dominguez, Federico [1 ]
Pelaez, Enrique [1 ]
机构
[1] Escuela Super Politecn Litoral ESPOL Univ, Elect & Comp Sci Engn Dept, Campus Gustavo Galindo km 30-5 Via Perimetral, Guayaquil, Ecuador
[2] Univ Catolica Cuenca, Cuenca, Ecuador
来源
2023 IEEE 13TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION SYSTEMS, ICPRS | 2023年
关键词
D O I
10.1109/ICPRS58416.2023.10179041
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This doctoral proposal introduces a novel method for detecting and diagnosing various thoracic diseases in chest images using advanced deep-learning approaches. The research aims to establish a powerful and effective technique for promptly recognizing multiple pathologies in chest radiographs, which holds significant implications for patient outcomes and healthcare resources. Additionally, the study investigates the potential benefits of data augmentation, transfer learning strategies, and multimodal data integration to enhance the proposed approach's performance and adaptability.
引用
收藏
页数:7
相关论文
共 50 条
[31]   COVID-CXNet: Detecting COVID-19 in frontal chest X-ray images using deep learning [J].
Arman Haghanifar ;
Mahdiyar Molahasani Majdabadi ;
Younhee Choi ;
S. Deivalakshmi ;
Seokbum Ko .
Multimedia Tools and Applications, 2022, 81 :30615-30645
[32]   Deep Generative Classifiers for Thoracic Disease Diagnosis with Chest X-ray Images [J].
Mao, Chengsheng ;
Pan, Yiheng ;
Zeng, Zexian ;
Yao, Liang ;
Luo, Yuan .
PROCEEDINGS 2018 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2018, :1209-1214
[33]   Deep Learning Approaches for Detecting COVID-19 From Chest X-Ray Images: A Survey [J].
Alghamdi, Hanan S. ;
Amoudi, Ghada ;
Elhag, Salma ;
Saeedi, Kawther ;
Nasser, Jomanah .
IEEE ACCESS, 2021, 9 (09) :20235-20254
[34]   Lightweight deep learning models for detecting COVID-19 from chest X-ray images [J].
Karakanis, Stefanos ;
Leontidis, Georgios .
COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 130 (130)
[35]   Pneumonia detection in chest X-ray images using an ensemble of deep learning models [J].
Kundu, Rohit ;
Das, Ritacheta ;
Geem, Zong Woo ;
Han, Gi-Tae ;
Sarkar, Ram .
PLOS ONE, 2021, 16 (09)
[36]   Deep Learning Models to Predict Fatal Pneumonia Using Chest X-Ray Images [J].
Anai, Satoshi ;
Hisasue, Junko ;
Takaki, Yoichi ;
Hara, Naohiko .
CANADIAN RESPIRATORY JOURNAL, 2022, 2022
[37]   Diagnosing Heart Failure from Chest X-Ray Images Using Deep Learning [J].
Matsumoto, Takuya ;
Kodera, Satoshi ;
Shinohara, Hiroki ;
Ieki, Hirotaka ;
Yamaguchi, Toshihiro ;
Higashikuni, Yasutomi ;
Kiyosue, Arihiro ;
Ito, Kaoru ;
Ando, Jiro ;
Takimoto, Eiki ;
Akazawa, Hiroshi ;
Morita, Hiroyuki ;
Komuro, Issei .
INTERNATIONAL HEART JOURNAL, 2020, 61 (04) :781-786
[38]   Diagnosing heart failure from chest X-ray images using deep learning [J].
Matsumoto, T. ;
Kodera, S. ;
Shinohara, H. ;
Kiyosue, A. ;
Higashikuni, Y. ;
Akazawa, H. ;
Komoro, I .
EUROPEAN HEART JOURNAL, 2020, 41 :1201-1201
[39]   Identification of COVID-19 with Chest X-ray Images using Deep Learning [J].
Khandar, Punam ;
Thaokar, Chetana .
INTERNATIONAL JOURNAL OF NEXT-GENERATION COMPUTING, 2021, 12 (05) :694-700
[40]   COVID Pneumonia Prediction Based on Chest X-Ray Images Using Deep Learning [J].
Khare, Akshat ;
Patel, Pranjal ;
Sankaranarayanan, Suresh ;
Lorenz, Pascal .
IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2022), 2022, :2580-2585