Microstructural Evaluation and Tensile Properties of Al-Mg-Sc-Zr Alloys Prepared by LPBF

被引:10
作者
Lu, Yuxian [1 ,2 ]
Zhang, Hao [1 ]
Xue, Peng [1 ]
Wu, Lihui [1 ]
Liu, Fengchao [1 ]
Jia, Luanluan [3 ]
Ni, Dingrui [1 ]
Xiao, Bolv [1 ]
Ma, Zongyi [1 ]
机构
[1] Chinese Acad Sci, Inst Met Res, Shi Changxu Innovat Ctr Adv Mat, Shenyang 110016, Peoples R China
[2] Univ Sci & Technol China, Sch Mat Sci & Engn, Shenyang 110016, Peoples R China
[3] Binzhou Inst Technol, Shandong Key Lab Adv Aluminum Mat & Technol, Weiqiao UCAS Sci & Technol Pk, Binzhou 256606, Peoples R China
基金
中国国家自然科学基金;
关键词
additive manufacturing; laser powder bed fusion; Al-Mg-Sc-Zr alloy; fine grain strengthening; solution strengthening; MECHANICAL-PROPERTIES; GRAIN-REFINEMENT; ENERGY DENSITY; AL-12SI ALLOY; LASER; STRENGTH; PRECIPITATION; EVOLUTION; PARAMETER; BEHAVIOR;
D O I
10.3390/cryst13060913
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
Laser powder bed fusion (LPBF) is a typical additive manufacturing technology that offers significant advantages in the production of complex components. With the rapid heating and cooling characteristics of LPBF, a large amount of solid solution of alloying elements in the matrix can be achieved to form supersaturated solid solutions, thus enhancing the properties of LPBF alloys. For the unique microstructure, the heat treatment process needs to be adjusted accordingly. In this work, a Zr/Sc-modified Al-Mg alloy processed by laser powder bed fusion (LPBF) with relatively low cost and good mechanical properties was investigated. The fine microstructure was obtained under rapid solidification conditions. The nanoscale Al-3(Sc,Zr) particles precipitated at the molten pool boundary during solidification. These particles, as effective heterogeneous nucleators, further refined the & alpha;-Al grains and improved the mechanical properties of the alloy. As a result, the alloy exhibited a heterogeneous microstructure consisting of columnar grains in the center of the molten pool and equiaxed grains at the boundaries. The rapid solidification resulted in the supersaturation of solute atoms in the & alpha;-Al matrix, which significantly enhanced the solid solution strengthening effect. With the LPBF processing parameters of a combination of a laser power of 250 W, a laser scanning speed of 833 mm/s, and stripe scanning mode, the tensile strength of the alloy reached 401.4 & PLUSMN; 5.7 MPa, which was significantly higher than that of the cast alloys with aging treatment (281.1 & PLUSMN; 1.3 MPa). The heat treatment promoted the formation of secondary Al-3(Sc,Zr), Mn/Mg-rich phases. The ultimate tensile strength and elongation at fracture after aging at 325 & DEG;C for 2 h were 536.0 & PLUSMN; 1.7 MPa and 14.8 & PLUSMN; 0.8%, respectively. The results provide insight into the preparation of aluminum alloys with relatively low cost and excellent mechanical properties.
引用
收藏
页数:14
相关论文
共 60 条
[1]   3D printing of Aluminium alloys: Additive Manufacturing of Aluminium alloys using selective laser melting [J].
Aboulkhair, Nesma T. ;
Simonelli, Marco ;
Parry, Luke ;
Ashcroft, Ian ;
Tuck, Christopher ;
Hague, Richard .
PROGRESS IN MATERIALS SCIENCE, 2019, 106
[2]   Laser powder bed fusion of high solute Al-Zn-Mg alloys: Processing, characterisation and properties [J].
Babu, A. P. ;
Kairy, S. K. ;
Huang, A. ;
Birbilis, N. .
MATERIALS & DESIGN, 2020, 196
[3]   On the limitations of Volumetric Energy Density as a design parameter for Selective Laser Melting [J].
Bertoli, Umberto Scipioni ;
Wolfer, Alexander J. ;
Matthews, Manyalibo J. ;
Delplanque, Jean-Pierre R. ;
Schoenung, Julie M. .
MATERIALS & DESIGN, 2017, 113 :331-340
[4]   An additively manufactured Al-14.1Mg-0.47Si-0.31Sc-0.17Zr alloy with high specific strength, good thermal stability and excellent corrosion resistance [J].
Bi, Jiang ;
Lei, Zhenglong ;
Chen, Yanbin ;
Chen, Xi ;
Lu, Nannan ;
Tian, Ze ;
Qin, Xikun .
JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2021, 67 :23-35
[5]   Mechanical properties of additive manufactured titanium (Ti-6Al-4V) blocks deposited by a solid-state laser and wire [J].
Brandl, Erhard ;
Palm, Frank ;
Michailov, Vesselin ;
Viehweger, Bernd ;
Leyens, Christoph .
MATERIALS & DESIGN, 2011, 32 (10) :4665-4675
[6]  
Celebi A, 2021, J MATER EDUC, V43, P153
[7]   Corrosion susceptibility of different planes of AlMgScZr alloy produced by selective laser melting [J].
Chen, Y. X. ;
Lin, D. Y. ;
Han, J. C. ;
Xia, X. J. ;
Chen, Y. Y. ;
Hao, W. K. ;
Yang, B. K. ;
Hu, P. H. ;
Chen, S. F. ;
Lu, Y. J. .
JOURNAL OF MANUFACTURING PROCESSES, 2022, 84 :240-250
[8]   Revealing the Effects of Powder Reuse for Selective Laser Melting by Powder Characterization [J].
Cordova, Laura ;
Campos, Monica ;
Tinga, Tiedo .
JOM, 2019, 71 (03) :1062-1072
[9]   Scientific, technological and economic issues in metal printing and their solutions [J].
DebRoy, T. ;
Mukherjee, T. ;
Milewski, J. O. ;
Elmer, J. W. ;
Ribic, B. ;
Blecher, J. J. ;
Zhang, W. .
NATURE MATERIALS, 2019, 18 (10) :1026-1032
[10]   Multiscale hierarchical and heterogeneous mechanical response of additively manufactured novel Al alloy investigated by high-resolution nanoindentation mapping [J].
Dhal, Abhijeet ;
Thapliyal, Saket ;
Gaddam, Supreeth ;
Agrawal, Priyanka ;
Mishra, Rajiv S. .
SCIENTIFIC REPORTS, 2022, 12 (01)