Modulating and optimizing 2D/2D Fe-Ni2P/ZnIn2S4 with S vacancy through surface engineering for efficient photocatalytic H2 evolution

被引:23
|
作者
Li, Guanqiong [1 ]
Liang, Haiou [1 ]
Fan, Xiaoye [1 ]
Lv, Xiaoling [4 ]
Sun, Xingwei [1 ]
Wang, Heng-guo [2 ,3 ]
Bai, Jie [1 ]
机构
[1] Inner Mongolia Univ Technol, Chem Engn Coll, Hohhot 010051, Peoples R China
[2] Northeast Normal Univ, Key Lab Polyoxometalate & Reticular Mat Chem, Minist Educ, Changchun 130022, Peoples R China
[3] Northeast Normal Univ, Fac Chem, Changchun 130022, Peoples R China
[4] Changchun Univ Sci & Technol, Sch Mat Sci & Engn, Changchun 130022, Peoples R China
基金
中国国家自然科学基金;
关键词
HYDROGEN-PRODUCTION; NICKEL PHOSPHIDE; ZNIN2S4; NI2P; FABRICATION; NANORODS; CARBON;
D O I
10.1039/d3ta02519e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Photocatalytic hydrogen release provides a sustainable and promising method for solar energy fuels and raw materials. The reasonable construction of nanocomposite photocatalysts with rapid charge transfer and broad solar response capability is of great significance for the efficient conversion of solar energy to chemical energy. Herein, for the first time, different metal ions (Fe, Co, and Mn) are doped in situ through the surface modification strategy to change the electronic structure and d band center of the cocatalyst Ni2P, which then adjusts the surface state of ZnIn2S4 nanosheets with S defects to accelerate the surface photocatalytic hydrogen evolution reaction. It is impressive that the constructed Fe-doped Ni2P/ZnIn2S4-Vs ultra-thin 2D/2D nanosheet structure has the best photocatalytic hydrogen evolution activity and lasts for 20 h, and its hydrogen evolution rate can reach 4548.75 & mu;mol g(-1) h(-1), which is 11.51-fold higher than that of pristine ZnIn2S4. Moreover, the simulation results indicate that Fe doping replaces the Ni site and also confirm the path of charge directional transfer. The composite catalyst optimizes the Gibbs free energy of the intermediate state of the hydrogen evolution reaction, thus improving intrinsic photocatalytic activity. This study provides guidance for the construction of a highly efficient hydrogen evolution photocatalyst.
引用
收藏
页码:14809 / 14818
页数:10
相关论文
共 50 条
  • [1] Facile photodeposition Ni(OH)2 anchored ZnIn2S4 as an efficient 1D/2D heterojunctions for photocatalytic H2 evolution
    Chen, Ruolin
    Zhu, Hongxun
    Liu, Wen
    Zhan, Difu
    Fu, Qian
    Tian, Jiayi
    Huang, Yizhong
    Han, Changchun
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2024, 107 (08) : 5201 - 5211
  • [2] Boosting Visible-Light Photocatalytic Hydrogen Evolution with an Efficient CuInS2/ZnIn2S4 2D/2D Heterojunction
    Guan, Zhongjie
    Pan, Jingwen
    Li, Qiuye
    Li, Guoqiang
    Yang, Jianjun
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2019, 7 (08): : 7736 - 7742
  • [3] Constructing a 2D/2D heterojunction of MoSe2/ZnIn2S4 nanosheets for enhanced photocatalytic hydrogen evolution
    Feng, Ting
    Zhao, Kaili
    Li, Haiyan
    Wang, Wei
    Dong, Bohua
    Cao, Lixin
    CRYSTENGCOMM, 2021, 23 (13) : 2547 - 2555
  • [4] 2D β-NiS as electron harvester anchors on 2D ZnIn2S4 for boosting photocatalytic hydrogen production
    Ding, Liang
    Li, Di
    Shen, Hongqiang
    Qiao, Xiaolei
    Shen, Hao
    Shi, Weidong
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 853
  • [5] 0D/2D CeO2/ZnIn2S4 Z-scheme heterojunction for visible-light-driven photocatalytic H2 evolution
    Zhang, Min
    Yao, Jiacheng
    Arif, Muhammad
    Qiu, Bo
    Yin, Hongfei
    Liu, Xiaoheng
    Chen, Shen-ming
    APPLIED SURFACE SCIENCE, 2020, 526
  • [6] Construction of 2D/2D Ni2P/CdS heterojunctions with significantly enhanced photocatalytic H2 evolution performance
    Liu, Chun
    Xiong, Minghui
    Chai, Bo
    Yan, Juntao
    Fan, Guozhi
    Song, Guangsen
    CATALYSIS SCIENCE & TECHNOLOGY, 2019, 9 (24) : 6929 - 6937
  • [7] 1D/2D CeO2/ZnIn2S4 Z-scheme heterojunction photocatalysts for efficient H2 evolution under visible light
    Jiang, Renqian
    Mao, Liang
    Zhao, Yulong
    Zhang, Junying
    Chubenko, Eugene B.
    Bondarenko, Vitaly
    Sui, Yanwei
    Gu, Xiuquan
    Cai, Xiaoyan
    SCIENCE CHINA-MATERIALS, 2023, 66 (01) : 139 - 149
  • [8] In-Situ Construction of 2D/2D ZnIn2S4/BiOCl Heterostructure with Enhanced Photocatalytic Activity for N2 Fixation and Phenol Degradation
    Guo, Li
    Han, Xuanxuan
    Zhang, Kailai
    Zhang, Yuanyuan
    Zhao, Qiang
    Wang, Danjun
    Fu, Feng
    CATALYSTS, 2019, 9 (09)
  • [9] 2D/2D MoS2/ZnIn2S4 heterojunction for simultaneous realization of solar water evaporation and photocatalytic dye degradation
    Lv, Xinbo
    Dong, Jing
    Yuan, Baohua
    Sun, Tong
    Liang, Ying
    Ji, Chunnuan
    Bai, Liangjiu
    Yang, Huawei
    Wei, Donglei
    Wang, Wenxiang
    Yang, Lixia
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 965
  • [10] Fabrication of 1D/2D CdS/Ag:ZnIn2S4 heterostructure for greatly efficacious photocatalytic H2 production and wastewater purification
    Dou, Yanting
    Gao, Yu
    Bai, Bobo
    Zheng, Jiqi
    Wang, Xiufang
    Li, Hongjiang
    Li, Yi
    Bu, Qiuhui
    Ma, Dongling
    Ding, Fu
    Sun, Yaguang
    Xu, Zhenhe
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2025, 109 : 453 - 464