A first-passage-place problem for integrated diffusion processes

被引:1
|
作者
Lefebvre, Mario [1 ,2 ]
机构
[1] Polytech Montreal, Montreal, PQ, Canada
[2] Polytech Montreal, Dept Math & Ind Engn, CP 6079,Succursale Ctr ville, Montreal, PQ H3C 3A7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
First-passage time; Brownian motion; Kolmogorov backward equation; Laplace transform;
D O I
10.1017/jpr.2023.19
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let dX(t) = -Y(t) dt, where Y(t) is a one-dimensional diffusion process, and let t(x, y) be the first time the process (X(t), Y(t)), starting from (x, y), leaves a subset of the first quadrant. The problem of computing the probability p(x, y) := P[X(t(x, y)) = 0] is considered. The Laplace transform of the function p(x, y) is obtained in important particular cases, and it is shown that the transform can at least be inverted numerically. Explicit expressions for the Laplace transform of E[t(x, y)] and of the moment-generating function of t(x, y) can also be derived.
引用
收藏
页码:55 / 67
页数:13
相关论文
共 50 条
  • [31] First Passage and First Exit Times for diffusion processes related to a general growth curve
    Albano, G.
    Barrera, A.
    Giorno, V
    Roman-Roman, P.
    Torres-Ruiz, F.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 126
  • [32] First-passage-time location function:: Application to determine first-passage-time densities in diffusion processes
    Roman, P.
    Serrano, J. J.
    Torres, F.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2008, 52 (08) : 4132 - 4146
  • [33] THE FIRST-PASSAGE PROBLEM WITH A NON-FICKIAN DIFFUSION EQUATION
    DAS, AK
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1995, 110 (11): : 1307 - 1310
  • [34] First-Passage Problems for Asymmetric Diffusions and Skew-diffusion Processes
    Abundo, Mario
    OPEN SYSTEMS & INFORMATION DYNAMICS, 2009, 16 (04): : 325 - 350
  • [35] First-passage problems for diffusion processes with state-dependent jumps
    Lefebvre, Mario
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2022, 51 (09) : 2908 - 2918
  • [36] A Computational Approach to First Passage Problems of Reflected Hyperexponential Jump Diffusion Processes
    Cai, Ning
    Yang, Xuewei
    INFORMS JOURNAL ON COMPUTING, 2021, 33 (01) : 216 - 229
  • [37] On first-passage-time and transition densities for strongly symmetric diffusion processes
    DiCrescenzo, A
    Giorno, V
    Nobile, AG
    Ricciardi, LM
    NAGOYA MATHEMATICAL JOURNAL, 1997, 145 : 143 - 162
  • [38] FIRST PASSAGE TIME OF DIFFUSION PROCESSES THROUGH TIME-DEPENDENT BOUNDARIES
    LEBEDEV, VA
    THEORY OF PROBILITY AND ITS APPLICATIONS,USSR, 1971, 16 (03): : 541 - &
  • [39] First-passage-time statistics for diffusion processes with an external random force
    Porra, JM
    Robinson, A
    Masoliver, J
    PHYSICAL REVIEW E, 1996, 53 (04): : 3240 - 3245
  • [40] Almost sure comparisons for first passage times of diffusion processes through boundaries
    Sacerdote, L
    Smith, CE
    METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2004, 6 (03) : 323 - 341