A first-passage-place problem for integrated diffusion processes

被引:1
|
作者
Lefebvre, Mario [1 ,2 ]
机构
[1] Polytech Montreal, Montreal, PQ, Canada
[2] Polytech Montreal, Dept Math & Ind Engn, CP 6079,Succursale Ctr ville, Montreal, PQ H3C 3A7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
First-passage time; Brownian motion; Kolmogorov backward equation; Laplace transform;
D O I
10.1017/jpr.2023.19
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let dX(t) = -Y(t) dt, where Y(t) is a one-dimensional diffusion process, and let t(x, y) be the first time the process (X(t), Y(t)), starting from (x, y), leaves a subset of the first quadrant. The problem of computing the probability p(x, y) := P[X(t(x, y)) = 0] is considered. The Laplace transform of the function p(x, y) is obtained in important particular cases, and it is shown that the transform can at least be inverted numerically. Explicit expressions for the Laplace transform of E[t(x, y)] and of the moment-generating function of t(x, y) can also be derived.
引用
收藏
页码:55 / 67
页数:13
相关论文
共 50 条