共 53 条
Nitsche-XFEM for a time fractional diffusion interface problem
被引:0
作者:
Wang, Tao
[1
]
Chen, Yanping
[2
]
机构:
[1] China Nucl Power Technol Res Inst Co Ltd, Shenzhen 518028, Peoples R China
[2] South China Normal Univ, Sch Math Sci, Guangzhou 510631, Peoples R China
基金:
中国国家自然科学基金;
中国博士后科学基金;
关键词:
fractional diffusion;
interface;
discontinuous Galerkin;
Nitsche-XFEM;
error estimates;
FINITE-ELEMENT-METHOD;
EVOLUTION EQUATION;
GALERKIN METHOD;
SPECTRAL METHOD;
CONVERGENCE;
SCHEME;
DISCRETIZATION;
APPROXIMATIONS;
REGULARITY;
D O I:
10.1007/s11425-021-2062-6
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
In this paper, we propose a space-time finite element method for a time fractional diffusion interface problem. This method uses the low-order discontinuous Galerkin (DG) method and the Nitsche extended finite element method (Nitsche-XFEM) for temporal and spatial discretization, respectively. Sharp pointwise-in-time error estimates in graded temporal grids are derived, without any smoothness assumptions on the solution. Finally, three numerical examples are provided to verify the theoretical results.
引用
收藏
页码:665 / 682
页数:18
相关论文