Nitsche-XFEM for a time fractional diffusion interface problem

被引:0
作者
Wang, Tao [1 ]
Chen, Yanping [2 ]
机构
[1] China Nucl Power Technol Res Inst Co Ltd, Shenzhen 518028, Peoples R China
[2] South China Normal Univ, Sch Math Sci, Guangzhou 510631, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
fractional diffusion; interface; discontinuous Galerkin; Nitsche-XFEM; error estimates; FINITE-ELEMENT-METHOD; EVOLUTION EQUATION; GALERKIN METHOD; SPECTRAL METHOD; CONVERGENCE; SCHEME; DISCRETIZATION; APPROXIMATIONS; REGULARITY;
D O I
10.1007/s11425-021-2062-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose a space-time finite element method for a time fractional diffusion interface problem. This method uses the low-order discontinuous Galerkin (DG) method and the Nitsche extended finite element method (Nitsche-XFEM) for temporal and spatial discretization, respectively. Sharp pointwise-in-time error estimates in graded temporal grids are derived, without any smoothness assumptions on the solution. Finally, three numerical examples are provided to verify the theoretical results.
引用
收藏
页码:665 / 682
页数:18
相关论文
共 53 条
[1]   FINITE ELEMENT METHOD FOR ELLIPTIC EQUATIONS WITH DISCONTINUOUS COEFFICIENTS [J].
BABUSKA, I .
COMPUTING, 1970, 5 (03) :207-&
[2]   Strongly stable generalized finite element method: Application to interface problems [J].
Babuska, Ivo ;
Banerjee, Uday ;
Kergrene, Kenan .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 327 :58-92
[3]   A finite element method for interface problems in domains with smooth boundaries and interfaces [J].
Bramble, JH ;
King, JT .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 1996, 6 (02) :109-138
[4]   CutFEM: Discretizing geometry and partial differential equations [J].
Burman, Erik ;
Claus, Susanne ;
Hansbo, Peter ;
Larson, Mats G. ;
Massing, Andre .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2015, 104 (07) :472-501
[5]   DISCONTINUOUS FINITE ELEMENT METHODS FOR INTERFACE PROBLEMS: ROBUST A PRIORI AND A POSTERIORI ERROR ESTIMATES [J].
Cai, Zhiqiang ;
He, Cuiyu ;
Zhang, Shun .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2017, 55 (01) :400-418
[6]   GENERALIZED JACOBI FUNCTIONS AND THEIR APPLICATIONS TO FRACTIONAL DIFFERENTIAL EQUATIONS [J].
Chen, Sheng ;
Shen, Jie ;
Wang, Li-Lian .
MATHEMATICS OF COMPUTATION, 2016, 85 (300) :1603-1638
[7]   Finite element methods and their convergence for elliptic and parabolic interface problems [J].
Chen, ZM ;
Zou, J .
NUMERISCHE MATHEMATIK, 1998, 79 (02) :175-202
[8]   A hybridizable discontinuous Galerkin method for fractional diffusion problems [J].
Cockburn, Bernardo ;
Mustapha, Kassem .
NUMERISCHE MATHEMATIK, 2015, 130 (02) :293-314
[9]   Convolution quadrature time discretization of fractional diffusion-wave equations [J].
Cuesta, E ;
Lubich, C ;
Palencia, C .
MATHEMATICS OF COMPUTATION, 2006, 75 (254) :673-696
[10]   Numerical approximation of an interface problem for fractional in time diffusion equation [J].
Delic, Aleksandra ;
Jovanovic, Bogko S. .
APPLIED MATHEMATICS AND COMPUTATION, 2014, 229 :467-479