Detecting physical laws from data of stochastic dynamical systems perturbed by non-Gaussian α-stable Levy noise

被引:1
作者
Lu, Linghongzhi [1 ]
Li, Yang [2 ]
Liu, Xianbin [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Aerosp Engn, State Key Lab Mech & Control Mech Struct, Nanjing 210016, Peoples R China
[2] Nanjing Univ Sci & Technol, Sch Automat, Nanjing 210094, Peoples R China
基金
中国国家自然科学基金;
关键词
data-driven modelling; noise-induced transitions; Levy noise; Kramers-Moyal formuas; IDENTIFICATION; INFORMATION; PATTERNS;
D O I
10.1088/1674-1056/aca7ee
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Massive data from observations, experiments and simulations of dynamical models in scientific and engineering fields make it desirable for data-driven methods to extract basic laws of these models. We present a novel method to identify such high dimensional stochastic dynamical systems that are perturbed by a non-Gaussian alpha-stable Levy noise. More explicitly, firstly a machine learning framework to solve the sparse regression problem is established to grasp the drift terms through one of nonlocal Kramers-Moyal formulas. Then the jump measure and intensity of the noise are disposed by the relationship with statistical characteristics of the process. Three examples are then given to demonstrate the feasibility. This approach proposes an effective way to understand the complex phenomena of systems under non-Gaussian fluctuations and illuminates some insights into the exploration for further typical dynamical indicators such as the maximum likelihood transition path or mean exit time of these stochastic systems.
引用
收藏
页数:6
相关论文
共 34 条
  • [1] Sparse learning of stochastic dynamical equations
    Boninsegna, Lorenzo
    Nueske, Feliks
    Clementi, Cecilia
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2018, 148 (24)
  • [2] Discovering governing equations from data by sparse identification of nonlinear dynamical systems
    Brunton, Steven L.
    Proctor, Joshua L.
    Kutz, J. Nathan
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (15) : 3932 - 3937
  • [3] Machine learning for molecular and materials science
    Butler, Keith T.
    Davies, Daniel W.
    Cartwright, Hugh
    Isayev, Olexandr
    Walsh, Aron
    [J]. NATURE, 2018, 559 (7715) : 547 - 555
  • [4] Chen R.T.Q., 2018, ADV NEURAL INFORM PR, DOI DOI 10.48550/ARXIV.1806.07366
  • [5] Observation of α-stable noise induced millennial climate changes from an ice-core record
    Ditlevsen, PD
    [J]. GEOPHYSICAL RESEARCH LETTERS, 1999, 26 (10) : 1441 - 1444
  • [6] Nonparametric estimation of stochastic differential equations with sparse Gaussian processes
    Garcia, Constantino A.
    Otero, Abraham
    Felix, Paulo
    Presedo, Jesus
    Marquez, David G.
    [J]. PHYSICAL REVIEW E, 2017, 96 (02)
  • [7] Generalized Lanczos method for systematic optimization of tensor network states
    Huang, Rui-Zhen
    Liao, Hai-Jun
    Liu, Zhi-Yuan
    Xie, Hai-Dong
    Xie, Zhi-Yuan
    Zhao, Hui-Hai
    Chen, Jing
    Xiang, Tao
    [J]. CHINESE PHYSICS B, 2018, 27 (07)
  • [8] Environmental context explains Levy and Brownian movement patterns of marine predators
    Humphries, Nicolas E.
    Queiroz, Nuno
    Dyer, Jennifer R. M.
    Pade, Nicolas G.
    Musyl, Michael K.
    Schaefer, Kurt M.
    Fuller, Daniel W.
    Brunnschweiler, Juerg M.
    Doyle, Thomas K.
    Houghton, Jonathan D. R.
    Hays, Graeme C.
    Jones, Catherine S.
    Noble, Leslie R.
    Wearmouth, Victoria J.
    Southall, Emily J.
    Sims, David W.
    [J]. NATURE, 2010, 465 (7301) : 1066 - 1069
  • [9] Machine learning: Trends, perspectives, and prospects
    Jordan, M. I.
    Mitchell, T. M.
    [J]. SCIENCE, 2015, 349 (6245) : 255 - 260
  • [10] L,vy flights in evolutionary ecology
    Jourdain, Benjamin
    Meleard, Sylvie
    Woyczynski, Wojbor A.
    [J]. JOURNAL OF MATHEMATICAL BIOLOGY, 2012, 65 (04) : 677 - 707