Fabrication and morphological effect of waxberry-like carbon for high-performance aqueous zinc-ion electrochemical storage

被引:12
|
作者
Li, Xiang [1 ]
Hu, Jindong [1 ]
Wu, Meng [2 ]
Guo, Chaochao [1 ]
Bai, Long [1 ]
Li, Jinming [1 ]
Li, Yuwei [1 ]
Luo, Dehao [1 ]
Duan, Jiamin [1 ]
Li, Xiaoli [2 ]
Li, Zhiguo [1 ]
机构
[1] Northeast Forestry Univ, Key Lab Biobased Mat Sci & Technol, Minist Educ, Harbin 150040, Peoples R China
[2] Northeast Forestry Univ, Coll Chem Chem Engn & Resource Utilizat, Harbin 150040, Peoples R China
关键词
Zinc -ion hybrid supercapacitors; Hydrothermal carbonization; Energy storage; High energy density; ASYMMETRIC SUPERCAPACITORS; HYBRID SUPERCAPACITOR; BATTERIES; CATHODE; DESIGN; LIFE;
D O I
10.1016/j.carbon.2023.01.036
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Promoting and enhancing the transport rate of multivalent electrolyte ions in the pores of electrode is central for constructing high-performance electrochemical devices. Herein, waxberry-like porous carbon with nanosheets packaged by spherical carbon particles is produced by adjusting separation of hydrophilic and hydrophobic parts of carbon source precursors. The carbon particles maintain their original morphology after KOH activation at high temperature, forming tunable pores (pore volume: 0.9386 cm3 g-1) on the surface of stacked nanosheet layers. Benefiting from the synergistic effect of structural features, an interfacial transport of aqueous zinc ions within the carbon electrodes is achieved, endowing the assembled zinc-ion hybrid supercapacitors (ZHSCs) with excellent energy storage performances, including high capacity (122.3 mAh g-1 at 0.1 A g- 1), high energy density (97.78 Wh kg -1), large power density (8000 W kg -1), and cycling stability up to 10,000 cycles with capacity retention of 98%. Moreover, the ZHSCs show superior low-temperature performance and operability (78.27 mAh g-1 at-30 degrees C and three-time cycling stability between-20 and 20 degrees C without performance degradation). This work presents a new prospect on design and development of aqueous rechargeable zinc-ion energy storage devices that are available for a range of environmental conditions.
引用
收藏
页码:226 / 235
页数:10
相关论文
共 50 条
  • [21] V2+-doped VS2 with rich defects for high-performance zinc storage in aqueous zinc-ion batteries
    Gao, Jing
    Qi, Xin
    Yang, Bo
    Quan, Haijia
    Hu, Changcheng
    Wang, Xiao-Feng
    Sun, Chenglin
    Wang, Shenghan
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 960
  • [22] Antifreezing polymeric-acid electrolyte for high-performance aqueous zinc-ion batteries
    Zhao, Jingteng
    Song, Congying
    Ma, Shaobo
    Gao, Qixin
    Li, Zhujie
    Dai, Ying
    Li, Guoxing
    ENERGY STORAGE MATERIALS, 2023, 61
  • [23] Appropriately hydrophilic/hydrophobic cathode enables high-performance aqueous zinc-ion batteries
    Zhang, Xiaotan
    Li, Jiangxu
    Ao, Huaisheng
    Liu, Dongyan
    Shi, Lei
    Wang, Chengming
    Zhu, Yongchun
    Qian, Yitai
    ENERGY STORAGE MATERIALS, 2020, 30 : 337 - 345
  • [24] A quinoxalinophenazinedione covalent triazine framework for boosted high-performance aqueous zinc-ion batteries
    Wang, Yiyun
    Wang, Xinlei
    Tang, Jian
    Tang, Weihua
    JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (26) : 13868 - 13875
  • [25] Highly-pseudocapacitive origin and design principles of MoS2 for high-performance aqueous zinc-ion storage
    Qiao, Sifan
    Zhang, Wei
    Gao, Yong
    Zhou, Xinyan
    Liang, Qing
    Xia, Zhenhai
    Yoo, Seung Jo
    Kim, Jin-Gyu
    Bondarchuk, Oleksandr
    Zhao, Zhenzhen
    Liu, Fuxi
    Ge, Xin
    Huang, Chengxiang
    Yang, He
    Pan, Hongge
    Zheng, Weitao
    ACTA MATERIALIA, 2024, 281
  • [26] Challenges in the material and structural design of zinc anode towards high-performance aqueous zinc-ion batteries
    Du, Wencheng
    Ang, Edison Huixiang
    Yang, Yang
    Zhang, Yufei
    Ye, Minghui
    Li, Cheng Chao
    ENERGY & ENVIRONMENTAL SCIENCE, 2020, 13 (10) : 3330 - 3360
  • [27] Multi-walled carbon nanotubes interlinked vanadium selenite nanocomposites as a positive electrode for high-performance aqueous zinc-ion batteries
    Shanthappa, R.
    Kakarla, Ashok Kumar
    Narsimulu, D.
    Bandi, Hari
    Yu, Jae Su
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 935
  • [28] Electroactivation-induced hydrated zinc vanadate as cathode for high-performance aqueous zinc-ion batteries
    Luo, Ping
    Zhang, Wenwei
    Wang, Shiyu
    Liu, Gangyuan
    Xiao, Yao
    Zuo, Chunli
    Tang, Wen
    Fu, Xudong
    Dong, Shijie
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 884
  • [29] Electrolyte Regulation Strategies for Improving the Electrochemical Performance of Aqueous Zinc-Ion Battery Cathodes
    Qi, Yae
    Xia, Yongyao
    ACTA PHYSICO-CHIMICA SINICA, 2023, 39 (02)
  • [30] A Br-Doped BiOCl Cathode for High-Performance Aqueous Zinc-Ion Battery
    Lin, Li
    Hu, Zhen-Yu
    Li, Lin-Zhan
    Liu, Wan-Qiang
    PROCEEDINGS OF THE 4TH INTERNATIONAL SYMPOSIUM ON NEW ENERGY AND ELECTRICAL TECHNOLOGY, ISNEET 2023, 2024, 1255 : 285 - 290