Metabolic Reprogramming and Potential Therapeutic Targets in Lymphoma

被引:8
作者
Pang, Yuyang [1 ,2 ]
Lu, Tingxun [1 ,3 ]
Xu-Monette, Zijun Y. [1 ,3 ]
Young, Ken H. [1 ,3 ]
机构
[1] Duke Univ, Dept Pathol, Div Hematopathol, Sch Med, Durham, NC 27710 USA
[2] Shanghai Jiao Tong Univ, Peoples Hosp 9, Dept Hematol, Sch Med, Shanghai 200025, Peoples R China
[3] Duke Canc Inst, Durham, NC 27710 USA
基金
美国国家卫生研究院;
关键词
lymphoma; metabolism; targeted therapy; B-CELL LYMPHOMA; ACTIVATED PROTEIN-KINASE; NON-HODGKIN-LYMPHOMA; HYPOXIA INDUCIBLE FACTOR-1-ALPHA; HISTONE DEACETYLASE INHIBITOR; GROWTH-FACTOR EXPRESSION; SUPPRESSES TUMOR-GROWTH; FATTY-ACID SYNTHESIS; GLUTAMINE-METABOLISM; IN-VITRO;
D O I
10.3390/ijms24065493
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Lymphoma is a heterogeneous group of diseases that often require their metabolism program to fulfill the demand of cell proliferation. Features of metabolism in lymphoma cells include high glucose uptake, deregulated expression of enzymes related to glycolysis, dual capacity for glycolytic and oxidative metabolism, elevated glutamine metabolism, and fatty acid synthesis. These aberrant metabolic changes lead to tumorigenesis, disease progression, and resistance to lymphoma chemotherapy. This metabolic reprogramming, including glucose, nucleic acid, fatty acid, and amino acid metabolism, is a dynamic process caused not only by genetic and epigenetic changes, but also by changes in the microenvironment affected by viral infections. Notably, some critical metabolic enzymes and metabolites may play vital roles in lymphomagenesis and progression. Recent studies have uncovered that metabolic pathways might have clinical impacts on the diagnosis, characterization, and treatment of lymphoma subtypes. However, determining the clinical relevance of biomarkers and therapeutic targets related to lymphoma metabolism is still challenging. In this review, we systematically summarize current studies on metabolism reprogramming in lymphoma, and we mainly focus on disorders of glucose, amino acids, and lipid metabolisms, as well as dysregulation of molecules in metabolic pathways, oncometabolites, and potential metabolic biomarkers. We then discuss strategies directly or indirectly for those potential therapeutic targets. Finally, we prospect the future directions of lymphoma treatment on metabolic reprogramming.
引用
收藏
页数:32
相关论文
共 262 条
[1]   Bortezomib attenuates HIF-1-but not HIF-2-mediated transcriptional activation [J].
Abd-Aziz, Noraini ;
Stanbridge, Eric J. ;
Shafee, Norazizah .
ONCOLOGY LETTERS, 2015, 10 (04) :2192-2196
[2]   Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling [J].
Alizadeh, AA ;
Eisen, MB ;
Davis, RE ;
Ma, C ;
Lossos, IS ;
Rosenwald, A ;
Boldrick, JG ;
Sabet, H ;
Tran, T ;
Yu, X ;
Powell, JI ;
Yang, LM ;
Marti, GE ;
Moore, T ;
Hudson, J ;
Lu, LS ;
Lewis, DB ;
Tibshirani, R ;
Sherlock, G ;
Chan, WC ;
Greiner, TC ;
Weisenburger, DD ;
Armitage, JO ;
Warnke, R ;
Levy, R ;
Wilson, W ;
Grever, MR ;
Byrd, JC ;
Botstein, D ;
Brown, PO ;
Staudt, LM .
NATURE, 2000, 403 (6769) :503-511
[3]   From Krebs to clinic: glutamine metabolism to cancer therapy [J].
Altman, Brian J. ;
Stine, Zachary E. ;
Dang, Chi V. .
NATURE REVIEWS CANCER, 2016, 16 (10) :619-634
[4]   Hypoxia-inducible factors in mantle cell lymphoma: implication for an activated mTORC1→HIF-1α pathway [J].
Argyriou, Pinelopi ;
Papageorgiou, Sotirios G. ;
Panteleon, Varvara ;
Psyrri, Amanda ;
Bakou, Vassiliki ;
Pappa, Vassiliki ;
Spathis, Aris ;
Economopoulou, Panagiota ;
Papageorgiou, Efstathios ;
Economopoulos, Theofanis ;
Rontogianni, Dimitra .
ANNALS OF HEMATOLOGY, 2011, 90 (03) :315-322
[5]   Choline kinase alpha-Putting the ChoK-hold on tumor metabolism [J].
Arlauckas, Sean P. ;
Popov, Anatoliy V. ;
Delikatny, E. James .
PROGRESS IN LIPID RESEARCH, 2016, 63 :28-40
[6]   Functional screening identifies MCT4 as a key regulator of breast cancer cell metabolism and survival [J].
Baenke, Franziska ;
Dubuis, Sebastien ;
Brault, Charlene ;
Weigelt, Britta ;
Dankworth, Beatrice ;
Griffiths, Beatrice ;
Jiang, Ming ;
Mackay, Alan ;
Saunders, Becky ;
Spencer-Dene, Bradley ;
Ros, Susana ;
Stamp, Gordon ;
Reis-Filho, Jorge S. ;
Howell, Michael ;
Zamboni, Nicola ;
Schulze, Almut .
JOURNAL OF PATHOLOGY, 2015, 237 (02) :152-165
[7]   c-Myc hot spot mutations in lymphomas result in inefficient ubiquitination and decreased proteasome-mediated turnover [J].
Bahram, F ;
von der Lehr, N ;
Cetinkaya, C ;
Larsson, LG .
BLOOD, 2000, 95 (06) :2104-2110
[8]   Effects of fatty acid synthase inhibitors on lymphatic vessels: an in vitro and in vivo study in a melanoma model [J].
Bastos, Debora C. ;
Paupert, Jenny ;
Maillard, Catherine ;
Seguin, Fabiana ;
Carvalho, Marco A. ;
Agostini, Michelle ;
Coletta, Ricardo D. ;
Noel, Agnes ;
Graner, Edgard .
LABORATORY INVESTIGATION, 2017, 97 (02) :194-206
[9]   MCT1 Inhibitor AZD3965 Increases Mitochondrial Metabolism, Facilitating Combination Therapy and Noninvasive Magnetic Resonance Spectroscopy [J].
Beloueche-Babari, Mounia ;
Wantuch, Slawomir ;
Galobart, Teresa Casals ;
Koniordou, Markella ;
Parkes, Harold G. ;
Arunan, Vaitha ;
Chung, Yuen-Li ;
Eykyn, Thomas R. ;
Smith, Paul D. ;
Leach, Martin O. .
CANCER RESEARCH, 2017, 77 (21) :5913-5924
[10]   Role of hypoxia in Diffuse Large B-cell Lymphoma: Metabolic repression and selective translation of HK2 facilitates development of DLBCL [J].
Bhalla, Kavita ;
Jaber, Sausan ;
Nahid, Nanaji M. ;
Underwood, Karen ;
Beheshti, Afshin ;
Landon, Ari ;
Bhandary, Binny ;
Bastain, Paul ;
Evens, Andrew M. ;
Haley, John ;
Polster, Brian ;
Gartenhaus, Ronald B. .
SCIENTIFIC REPORTS, 2018, 8