Artificial intelligence and machine learning in ophthalmology: A review

被引:23
|
作者
Srivastava, Ojas [1 ]
Tennant, Matthew [2 ]
Grewal, Parampal [2 ,3 ]
Rubin, Uriel [2 ]
Seamone, Mark [2 ,4 ]
机构
[1] Univ Alberta, Fac Med & Dent, Edmonton, AB, Canada
[2] Univ Alberta, Dept Ophthalmol & Visual Sci, Edmonton, AB, Canada
[3] Univ Toronto, Dept Ophthalmol & Vis Sci, Toronto, ON, Canada
[4] Alberta Retina Consultants Su 400, 10924 107 Ave, Edmonton, AB, Canada
关键词
AI; anterior segment; cornea; ophthalmology; retina; pediatrics; OPTICAL COHERENCE TOMOGRAPHY; DIABETIC-RETINOPATHY; MACULAR DEGENERATION; GLAUCOMA PROGRESSION; DEEP; IMAGES; VALIDATION; SEGMENTATION; NEUROPATHY; ALGORITHM;
D O I
10.4103/ijo.IJO_1569_22
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
Since the introduction of artificial intelligence (AI) in 1956 by John McCarthy, the field has propelled medicine, optimized efficiency, and led to technological breakthroughs in clinical care. As an important frontier in healthcare, AI has implications on every subspecialty within medicine. This review highlights the applications of AI in ophthalmology: a specialty that lends itself well to the integration of computer algorithms due to the high volume of digital imaging, data, and objective metrics such as central retinal thickness. The focus of this review is the use of AI in retina, cornea, anterior segment, and pediatrics.
引用
收藏
页码:11 / 17
页数:7
相关论文
共 50 条
  • [1] Commentary: Rise of machine learning and artificial intelligence in ophthalmology
    Akkara, John Davis
    Kuriakose, Anju
    INDIAN JOURNAL OF OPHTHALMOLOGY, 2019, 67 (07) : 1009 - 1010
  • [2] Artificial intelligence and deep learning in ophthalmology - present and future (Review)
    Moraru, Andreea Dana
    Costin, Danut
    Moraru, Radu Lucian
    Branisteanu, Daniel Constantin
    EXPERIMENTAL AND THERAPEUTIC MEDICINE, 2020, 20 (04) : 3469 - 3473
  • [3] Artificial intelligence in ophthalmology: Optimization of machine learning for ophthalmic care and research
    Ong, Joshua
    Selvam, Amrish
    Chhablani, Jay
    CLINICAL AND EXPERIMENTAL OPHTHALMOLOGY, 2021, 49 (05): : 413 - 415
  • [4] Artificial intelligence and deep learning in ophthalmology
    Ting, Daniel Shu Wei
    Pasquale, Louis R.
    Peng, Lily
    Campbell, John Peter
    Lee, Aaron Y.
    Raman, Rajiv
    Tan, Gavin Siew Wei
    Schmetterer, Leopold
    Keane, Pearse A.
    Wong, Tien Yin
    BRITISH JOURNAL OF OPHTHALMOLOGY, 2019, 103 (02) : 167 - 175
  • [5] Promising Artificial Intelligence-Machine Learning-Deep Learning Algorithms in Ophthalmology
    Balyen, Lokman
    Peto, Tunde
    ASIA-PACIFIC JOURNAL OF OPHTHALMOLOGY, 2019, 8 (03): : 264 - 272
  • [6] Artificial Intelligence and Machine Learning inNeuroregeneration: A Systematic Review
    Mulpuri, Rajendra P.
    Konda, Nikhitha
    Gadde, Sai T.
    Amalakanti, Sridhar
    Valiveti, Sindhu Chowdary
    CUREUS JOURNAL OF MEDICAL SCIENCE, 2024, 16 (05)
  • [7] Artificial intelligence and machine learning in cardiotocography: A scoping review
    Aeberhard, Jasmin L.
    Radan, Anda-Petronela
    Delgado-Gonzalo, Ricard
    Strahm, Karin Maya
    Sigurthorsdottir, Halla Bjorg
    Schneider, Sophie
    Surbek, Daniel
    EUROPEAN JOURNAL OF OBSTETRICS & GYNECOLOGY AND REPRODUCTIVE BIOLOGY, 2023, 281 : 54 - 62
  • [8] Introduction to artificial intelligence and machine learning into orthodontics: A review
    Kondody, Rony T.
    Patil, Aishwarya
    Devika, G.
    Jose, Angeline
    Kumar, Ashwath
    Nair, Saumya
    APOS TRENDS IN ORTHODONTICS, 2022, 12 (03) : 214 - 220
  • [9] Artificial Intelligence and Machine Learning in Marketing: A Bibliometric Review
    Kushwaha, Pooja S.
    Badhera, Usha
    PACIFIC BUSINESS REVIEW INTERNATIONAL, 2023, 15 (05): : 55 - 66
  • [10] Artificial Intelligence and Machine Learning in Electrophysiology—a Short Review
    Shahrukh Khan
    Chanho Lim
    Humza Chaudhry
    Ala Assaf
    Eoin Donnelan
    Nassir Marrouche
    Omar Kreidieh
    Current Treatment Options in Cardiovascular Medicine, 2023, 25 : 443 - 460