Artificial intelligence and machine learning in ophthalmology: A review

被引:23
作者
Srivastava, Ojas [1 ]
Tennant, Matthew [2 ]
Grewal, Parampal [2 ,3 ]
Rubin, Uriel [2 ]
Seamone, Mark [2 ,4 ]
机构
[1] Univ Alberta, Fac Med & Dent, Edmonton, AB, Canada
[2] Univ Alberta, Dept Ophthalmol & Visual Sci, Edmonton, AB, Canada
[3] Univ Toronto, Dept Ophthalmol & Vis Sci, Toronto, ON, Canada
[4] Alberta Retina Consultants Su 400, 10924 107 Ave, Edmonton, AB, Canada
基金
英国科研创新办公室;
关键词
AI; anterior segment; cornea; ophthalmology; retina; pediatrics; OPTICAL COHERENCE TOMOGRAPHY; DIABETIC-RETINOPATHY; MACULAR DEGENERATION; GLAUCOMA PROGRESSION; DEEP; IMAGES; VALIDATION; SEGMENTATION; NEUROPATHY; ALGORITHM;
D O I
10.4103/ijo.IJO_1569_22
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
Since the introduction of artificial intelligence (AI) in 1956 by John McCarthy, the field has propelled medicine, optimized efficiency, and led to technological breakthroughs in clinical care. As an important frontier in healthcare, AI has implications on every subspecialty within medicine. This review highlights the applications of AI in ophthalmology: a specialty that lends itself well to the integration of computer algorithms due to the high volume of digital imaging, data, and objective metrics such as central retinal thickness. The focus of this review is the use of AI in retina, cornea, anterior segment, and pediatrics.
引用
收藏
页码:11 / 17
页数:7
相关论文
共 85 条
  • [1] Classification of Color-Coded Scheimpflug Camera Corneal Tomography Images Using Deep Learning
    Abdelmotaal, Hazem
    Mostafa, Magdi M.
    Mostafa, Ali N. R.
    Mohamed, Abdelsalam A.
    Abdelazeem, Khaled
    [J]. TRANSLATIONAL VISION SCIENCE & TECHNOLOGY, 2020, 9 (13): : 1 - 12
  • [2] Improved Automated Detection of Diabetic Retinopathy on a Publicly Available Dataset Through Integration of Deep Learning
    Abramoff, Michael David
    Lou, Yiyue
    Erginay, Ali
    Clarida, Warren
    Amelon, Ryan
    Folk, James C.
    Niemeijer, Meindert
    [J]. INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2016, 57 (13) : 5200 - 5206
  • [3] Identification of glaucoma from fundus images using deep learning techniques
    Ajitha, S.
    Akkara, John D.
    Judy, M., V
    [J]. INDIAN JOURNAL OF OPHTHALMOLOGY, 2021, 69 (10) : 2702 - 2709
  • [4] Akkara JD., 2019, Kerala J Ophthalmol, V31, P150, DOI DOI 10.4103/KJO.KJO_54_19
  • [5] ARCHER D B, 1991, Eye (London), V5, P239
  • [6] Detecting Preperimetric Glaucoma with Standard Automated Perimetry Using a Deep Learning Classifier
    Asaoka, Ryo
    Murata, Hiroshi
    Iwase, Aiko
    Araie, Makoto
    [J]. OPHTHALMOLOGY, 2016, 123 (09) : 1974 - 1980
  • [7] Glaucomatous Patterns in Frequency Doubling Technology (FDT) Perimetry Data Identified by Unsupervised Machine Learning Classifiers
    Bowd, Christopher
    Weinreb, Robert N.
    Balasubramanian, Madhusudhanan
    Lee, Intae
    Jang, Giljin
    Yousefi, Siamak
    Zangwill, Linda M.
    Medeiros, Felipe A.
    Girkin, Christopher A.
    Liebmann, Jeffrey M.
    Goldbaum, Michael H.
    [J]. PLOS ONE, 2014, 9 (01):
  • [8] Artificial Intelligence in Medicine: Today and Tomorrow
    Briganti, Giovanni
    Le Moine, Olivier
    [J]. FRONTIERS IN MEDICINE, 2020, 7
  • [9] Automated Diagnosis of Plus Disease in Retinopathy of Prematurity Using Deep Convolutional Neural Networks
    Brown, James M.
    Campbell, J. Peter
    Beers, Andrew
    Chang, Ken
    Ostmo, Susan
    Chan, R. V. Paul
    Dy, Jennifer
    Erdogmus, Deniz
    Ioannidis, Stratis
    Kalpathy-Cramer, Jayashree
    Chiang, Michael F.
    [J]. JAMA OPHTHALMOLOGY, 2018, 136 (07) : 803 - 810
  • [10] Automated Grading of Age-Related Macular Degeneration From Color Fundus Images Using Deep Convolutional Neural Networks
    Burlina, Philippe M.
    Joshi, Neil
    Pekala, Michael
    Pacheco, Katia D.
    Freund, David E.
    Bressler, Neil M.
    [J]. JAMA OPHTHALMOLOGY, 2017, 135 (11) : 1170 - 1176