The Effect of Periodic Duty Cyclings in Metal-Modulated Epitaxy on GaN:Mg Film

被引:2
作者
Fang, Jun [1 ,2 ]
Yang, Wenxian [2 ]
Zhang, Xue [1 ,2 ]
Tian, Aiqin [2 ]
Lu, Shulong [1 ,2 ]
Liu, Jianping [1 ,2 ]
Yang, Hui [1 ,2 ]
机构
[1] Univ Sci & Technol China, Sch Nanotech & Nanobion, Hefei 230026, Peoples R China
[2] Chinese Acad Sci, Suzhou Inst Nanotech & Nanobion, Key Lab Nanodevices & Applicat, Suzhou 215123, Peoples R China
关键词
metal modulation epitaxy; hole concentrations; GaN; Mg; MG; GROWTH;
D O I
10.3390/ma16041730
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Metal modulation epitaxy (MME) is a technique in which metal beams (Al, Ga, In, and Mg) are switched on and off in short periods in an RF MBE system while a continuous nitrogen plasma beam is kept on. We systematically studied the effect of periodic duty cycling on the morphology, crystalline quality, Mg doping concentration, and electrical properties of GaN:Mg films grown by MME. When the metal shutter duty cycling is 20 s open/10 s close, the sample has smooth surface with clear steps even with Mg doping concentration higher than 1 x 10(20) cm(-3). The RMS roughness is about 0.5 nm. The FWHM of (002) XRD rocking curve is 230 arcsec and the FWHM of (102) XRD rocking curve is 260 arcsec. As result, a hole concentration of 5 x 10(18) cm(-3) and a resistivity of 1.5 ohm center dot cm have been obtained. The hole concentration increases due to the incorporation of surface accumulated Mg dopants into suitable Ga substitutional sites with minimal formation of compensatory defects.
引用
收藏
页数:10
相关论文
共 29 条
[1]   Challenges in material processing and reliability issues in AlGaN/GaN HEMTs on silicon wafers for future RF power electronics & switching applications: A critical review [J].
Ajayan, J. ;
Nirmal, D. ;
Mohankumar, P. ;
Mounika, B. ;
Bhattacharya, Sandip ;
Tayal, Shubham ;
Fletcher, A. S. Augustine .
MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2022, 151
[2]   Surface reconstruction and magnesium incorporation on semipolar GaN(1(1)over-bar01) surfaces [J].
Akiyama, Toru ;
Ammi, Daisuke ;
Nakamura, Kohji ;
Ito, Tomonori .
PHYSICAL REVIEW B, 2010, 81 (24)
[3]   Reproducible increased Mg incorporation and large hole concentration in GaN using metal modulated epitaxy [J].
Burnham, Shawn D. ;
Namkoong, Gon ;
Look, David C. ;
Clafin, Bruce ;
Doolittle, W. Alan .
JOURNAL OF APPLIED PHYSICS, 2008, 104 (02)
[4]   Characterization of MOCVD regrown p-GaN and the interface properties for vertical GaN power devices [J].
Fu, Kai ;
Qi, Xin ;
Fu, Houqiang ;
Su, Po-Yi ;
Liu, Hanxiao ;
Yang, Tsung-Han ;
Yang, Chen ;
Montes, Jossue ;
Zhou, Jingan ;
Ponce, Fernando A. ;
Zhao, Yuji .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2021, 36 (01)
[5]   Polarity control during molecular beam epitaxy growth of Mg-doped GaN [J].
Green, DS ;
Haus, E ;
Wu, F ;
Chen, L ;
Mishra, UK ;
Speck, JS .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2003, 21 (04) :1804-1811
[6]   Electronic properties of p-GaN co-doped with Mn by thermal process: Surface studies [J].
Grodzicki, M. ;
Mazur, P. ;
Sabik, A. .
SURFACE SCIENCE, 2019, 689
[7]   Optimization of the surface morphologies and electron mobilities in GaN grown by plasma-assisted molecular beam epitaxy [J].
Heying, B ;
Smorchkova, I ;
Poblenz, C ;
Elsass, C ;
Fini, P ;
Den Baars, S ;
Mishra, U ;
Speck, JS .
APPLIED PHYSICS LETTERS, 2000, 77 (18) :2885-2887
[8]   Hole conductivity and compensation in epitaxial GaN:Mg layers [J].
Kaufmann, U ;
Schlotter, P ;
Obloh, H ;
Köhler, K ;
Maier, M .
PHYSICAL REVIEW B, 2000, 62 (16) :10867-10872
[9]   Investigation of nitrogen polar p-type doped GaN/AlxGa(1-x)N superlattices for applications in wide-bandgap p-type field effect transistors [J].
Krishna, Athith ;
Raj, Aditya ;
Hatui, Nirupam ;
Keller, Stacia ;
Mishra, Umesh K. .
APPLIED PHYSICS LETTERS, 2019, 115 (17)
[10]   Miscut dependent surface evolution in the process of N-polar GaN (000(1)over-bar) growth under N-rich condition [J].
Krzyzewski, Filip ;
Zaluska-Kotur, Magdalena A. ;
Turski, Henryk ;
Sawicka, Marta ;
Skierbiszewski, Czeslaw .
JOURNAL OF CRYSTAL GROWTH, 2017, 457 :38-45