Resolving atomistic structure and oxygen evolution activity in nickel antimonates

被引:8
作者
Rao, Karun K. K. [1 ,2 ]
Zhou, Lan [3 ,4 ]
Lai, Yungchieh [3 ,4 ]
Richter, Matthias H. H. [3 ,4 ]
Li, Xiang [5 ,6 ]
Lu, Yubing [7 ]
Yano, Junko [6 ,7 ]
Gregoire, John M. M. [3 ,4 ]
Bajdich, Michal [1 ]
机构
[1] SUNCAT Ctr Interface Sci & Catalysis & Liquid Sunl, SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA
[2] Stanford Univ, Dept Chem Engn, Stanford, CA USA
[3] CALTECH, Div Engn & Appl Sci, Pasadena, CA 91125 USA
[4] CALTECH, Liquid Sunlight Alliance, Pasadena, CA 91125 USA
[5] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA
[6] Lawrence Berkeley Natl Lab, Liquid Sunlight Alliance, Berkeley, CA 94720 USA
[7] Lawrence Berkeley Natl Lab, Mol Biophys & Integrated Bioimaging Div, Berkeley, CA 94720 USA
关键词
TOTAL-ENERGY CALCULATIONS; REDUCTION; STABILITY; SPECTRA;
D O I
10.1039/d2ta08854a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The oxygen evolution reaction (OER) requires electrodes that are not only catalytically active, but also stable under harsh electrochemical environments to enable efficient, durable technologies. Our recent report of a stable amorphous Ni0.5Sb0.5Oz OER photoanode established Ni-Sb-O as an important system for computational understanding of both the structural and catalytic behavior of these complex oxides. In the present work we show that NixSb1-xOz with x > 0.33 crystallizes into a previously unknown phase. Guided by experimental X-ray diffraction, we use density functional theory calculations to perform a prototype phase search to identify a broad family of stable and metastable mixed rutile and hexagonal-like phases for x = 0.33, 0.50, and 0.66 compositions. For the identified phases, we predict favorable oxygen vacancy formation energies for Ni-rich compositions under the reducing synthesis conditions which match measured Ni K-edge X-ray absorption spectra. The calculated overpotential for the most active site decreases with increasing Ni content, from 0.91 V (x = 0.33) to 0.49 V (x = 0.66), which captures the experimentally observed trend. We find the active site changes from the Ni-O-Sb bridge to a Ni-O-Ni bridge at increasing Ni concentrations, rather than the commonly studied singly under-coordinated sites. Finally, detailed Pourbaix analysis of the identified phases show excellent electrochemical stability, consistent with experimentally measured low metal ion concentrations in the electrolyte of photoelectrochemical cells. Collectively, our consideration of an ensemble of structures enables identification of the most catalytically prolific structural motifs, aiding the understanding of crystalline and amorphous catalysts and elucidating the co-optimization of activity and durability in nickel antimonates.
引用
收藏
页码:5166 / 5178
页数:13
相关论文
共 34 条
[11]   First-Row Transition Metal Antimonates for the Oxygen Reduction Reaction [J].
Gunasooriya, G. T. Kasun Kalhara ;
Kreider, Melissa E. ;
Liu, Yunzhi ;
Zeledon, Jose A. Zamora ;
Wang, Zhenbin ;
Valle, Eduardo ;
Yang, An-Chih ;
Gallo, Alessandro ;
Sinclair, Robert ;
Stevens, Michaela Burke ;
Jaramillo, Thomas F. ;
Norskov, Jens K. .
ACS NANO, 2022, 16 (04) :6334-6348
[12]   Analysis of Acid-Stable and Active Oxides for the Oxygen Evolution Reaction [J].
Gunasooriya, G. T. Kasun Kalhara ;
Norskov, Jens K. .
ACS ENERGY LETTERS, 2020, 5 (12) :3778-3787
[13]   Surface Pourbaix diagrams and oxygen reduction activity of Pt, Ag and Ni(111) surfaces studied by DFT [J].
Hansen, Heine A. ;
Rossmeisl, Jan ;
Norskov, Jens K. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2008, 10 (25) :3722-3730
[14]   Commentary: The Materials Project: A materials genome approach to accelerating materials innovation [J].
Jain, Anubhav ;
Shyue Ping Ong ;
Hautier, Geoffroy ;
Chen, Wei ;
Richards, William Davidson ;
Dacek, Stephen ;
Cholia, Shreyas ;
Gunter, Dan ;
Skinner, David ;
Ceder, Gerbrand ;
Persson, Kristin A. .
APL MATERIALS, 2013, 1 (01)
[15]   Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J].
Kresse, G ;
Furthmuller, J .
PHYSICAL REVIEW B, 1996, 54 (16) :11169-11186
[16]   On factors limiting the performance of photoelectrochemical CO2 reduction [J].
Liu, Ya ;
Guo, Liejin .
JOURNAL OF CHEMICAL PHYSICS, 2020, 152 (10)
[17]   Similarity Between Amorphous and Crystalline Phases: The Case of TiO2 [J].
Mavracic, Juraj ;
Mocanu, Felix C. ;
Deringer, Volker L. ;
Csanyi, Gabor ;
Elliott, Stephen R. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2018, 9 (11) :2985-2990
[18]   Crystalline nickel manganese antimonate as a stable water-oxidation catalyst in aqueous 1.0 M H2SO4 [J].
Moreno-Hernandez, Ivan A. ;
MacFarland, Clara A. ;
Read, Carlos G. ;
Papadantonakis, Kimberly M. ;
Brunschwig, Bruce S. ;
Lewis, Nathan S. .
ENERGY & ENVIRONMENTAL SCIENCE, 2017, 10 (10) :2103-2108
[19]   Origin of the overpotential for oxygen reduction at a fuel-cell cathode [J].
Norskov, JK ;
Rossmeisl, J ;
Logadottir, A ;
Lindqvist, L ;
Kitchin, JR ;
Bligaard, T ;
Jónsson, H .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (46) :17886-17892
[20]   Python']Python Materials Genomics (pymatgen): A robust, open-source python']python library for materials analysis [J].
Ong, Shyue Ping ;
Richards, William Davidson ;
Jain, Anubhav ;
Hautier, Geoffroy ;
Kocher, Michael ;
Cholia, Shreyas ;
Gunter, Dan ;
Chevrier, Vincent L. ;
Persson, Kristin A. ;
Ceder, Gerbrand .
COMPUTATIONAL MATERIALS SCIENCE, 2013, 68 :314-319