Biofilm Inhibitory Activity of Actinomycete-Synthesized AgNPs with Low Cytotoxic Effect: Experimental and In Silico Study

被引:13
作者
AboElmaaty, Sabah A. A. [1 ]
Shati, Ali A. A. [2 ]
Alfaifi, Mohammad Y. Y. [2 ]
Elbehairi, Serag Eldin I. [2 ,3 ]
Sheraba, Norhan S. S. [4 ]
Hassan, Mervat G. G. [1 ]
Badawy, Mona Shaban E. M. [5 ]
Ghareeb, Ahmed [6 ]
Hamed, Ahmed A. A. [7 ]
Gabr, Ebtsam Z. Z. [1 ]
机构
[1] Benha Univ, Fac Sci, Bot & Microbiol Dept, Banha 13511, Egypt
[2] King Khalid Univ, Fac Sci, Dept Biol, Abha 9004, Saudi Arabia
[3] VACSERA Holding Co, Cell Culture Lab, Egyptian Org Biol Prod & Vaccines, Giza 12511, Egypt
[4] Holding Co Biol Prod & Vaccines, VACSERA, Giza 12511, Egypt
[5] Al Azhar Univ, Fac Pharm Girls, Dept Microbiol & Immunol, Cairo 11884, Egypt
[6] Cairo Univ, Fac Sci, Bot & Microbiol Dept, Giza 12613, Egypt
[7] Natl Res Ctr, Microbial Chem Dept, 33 El Buhouth St, Giza 12622, Egypt
关键词
biogenic AgNPs; streptomyces; antibifilm; SILVER NANOPARTICLES; ESCHERICHIA-COLI; ANTIMICROBIAL ACTIVITY; GENERATION; MICROSCOPY; MECHANISM; CELLS;
D O I
10.3390/microorganisms11010102
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
The emergence of resistance by biofilm-forming bacteria has reached alarming and dangerous levels that threaten human civilization. The current study sought to investigate the antibiofilm potential of green-synthesized silver nanoparticles, mediated by a new Streptomyces strain. Zeta potential, transmission electron microscopy (TEM), and UV-Vis spectroscopy were used to analyze the biosynthesized AgNPs. Results revealed that silver nanoparticles had a size of (5.55 and 45.00 nm) nm and a spherical shape, with surface plasmon resonance (SPR) absorption at 400-460 nm in the UV-vis spectra establishing the formation of Streptomyces-Ag-NPs. The biosynthesized AgNPs showed a pronounced antibacterial efficacy against Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, and Staphylococcus aureus. Moreover, the obtained Streptomyces-AgNPs exerted biofilm inhibition activity against nosocomial hospital-resistant bacteria, including Bacillus subtilis, Staphylococcus aureus, and Escherichia coli. The mechanism of biogenic AgNPs antibacterial action was visualized using TEM, which indicated the AgNPs accumulation and disruption of bacterial cell membrane function. Additionally, a molecular docking study was conducted to evaluate the binding mode of AgNPs with an Escherichia coli outer membrane. Furthermore, the cytotoxic profile of the AgNPs was evaluated toward three cell lines (MCF-7, HepG2 & HCT 116), and the low cytotoxic effects of the obtained nanoparticles indicated their possible medical application with low risks to human health.
引用
收藏
页数:16
相关论文
共 50 条
[1]   Mycogenic Silver Nanoparticles From Endophytic Trichoderma atroviride with Antimicrobial Activity [J].
Abdel-Azeem, Ahmed ;
Nada, Amr A. ;
O'Donovan, Anthonia ;
Thakur, Vijay Kumar ;
El Kelish, Amr .
JOURNAL OF RENEWABLE MATERIALS, 2020, 8 (02) :171-185
[2]  
Abdel-Aziz M. S., 2019, Comunicata Scientiae, V10, P218
[3]   Size-controlled silver nanoparticles synthesized over the range 5-100 nm using the same protocol and their antibacterial efficacy [J].
Agnihotri, Shekhar ;
Mukherji, Soumyo ;
Mukherji, Suparna .
RSC ADVANCES, 2014, 4 (08) :3974-3983
[4]   Characterization of Silver Nanomaterials Derived from Marine Streptomyces sp Al-Dhabi-87 and Its In Vitro Application against Multidrug Resistant and Extended-Spectrum Beta-Lactamase Clinical Pathogens [J].
Al-Dhabi, Naif Abdullah ;
Ghilan, Abdul-Kareem Mohammed ;
Arasu, Mariadhas Valan .
NANOMATERIALS, 2018, 8 (05)
[5]   Flavonoids as Potential anti-MRSA Agents through Modulation of PBP2a: A Computational and Experimental Study [J].
Alhadrami, Hani A. ;
Hamed, Ahmed A. ;
Hassan, Hossam M. ;
Belbahri, Lassaad ;
Rateb, Mostafa E. ;
Sayed, Ahmed M. .
ANTIBIOTICS-BASEL, 2020, 9 (09) :1-16
[6]   High-resolution atomic force microscopy studies of the Escherichia coli outer membrane:: Structural basis for permeability [J].
Amro, NA ;
Kotra, LP ;
Wadu-Mesthrige, K ;
Bulychev, A ;
Mobashery, S ;
Liu, GY .
LANGMUIR, 2000, 16 (06) :2789-2796
[7]   Nanotechnology and potential of microorganisms [J].
Bhattacharya, D ;
Gupta, RK .
CRITICAL REVIEWS IN BIOTECHNOLOGY, 2005, 25 (04) :199-204
[8]   Silver Nanoparticles: Technological Advances, Societal Impacts, and Metrological Challenges [J].
Calderon-Jimenez, Bryan ;
Johnson, Monique E. ;
Bustos, Antonio R. Montoro ;
Murphy, Karen E. ;
Winchester, Michael R. ;
Baudrit, Jose R. Vega .
FRONTIERS IN CHEMISTRY, 2017, 5
[9]   Unique Cellular Interaction of Silver Nanoparticles: Size-Dependent Generation of Reactive Oxygen Species [J].
Carlson, C. ;
Hussain, S. M. ;
Schrand, A. M. ;
Braydich-Stolle, L. K. ;
Hess, K. L. ;
Jones, R. L. ;
Schlager, J. J. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2008, 112 (43) :13608-13619
[10]   Highly bacterial resistant silver nanoparticles: synthesis and antibacterial activities [J].
Chudasama, Bhupendra ;
Vala, Anjana K. ;
Andhariya, Nidhi ;
Mehta, R. V. ;
Upadhyay, R. V. .
JOURNAL OF NANOPARTICLE RESEARCH, 2010, 12 (05) :1677-1685