Tracking System for a Coal Mine Drilling Robot for Low-Illumination Environments

被引:4
作者
You, Shaoze [1 ,2 ]
Zhu, Hua [1 ]
Li, Menggang [1 ]
Li, Yutan [1 ,3 ]
Tang, Chaoquan [1 ]
机构
[1] China Univ Min & Technol, Sch Mechatron Engn, Xuzhou 221116, Peoples R China
[2] China Univ Min & Technol, Jiangsu Collaborat Innovat Ctr Intelligent Min Equ, Xuzhou 221008, Peoples R China
[3] Jiangsu Vocat Inst Architectural Technol, Sch Intelligent Mfg, Xuzhou 221116, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 01期
关键词
visual object tracking; low illumination; image enhancement; computer vision; mobile drilling robot; coal mine robot; OBJECT TRACKING;
D O I
10.3390/app13010568
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In recent years, discriminative correlation filters (DCF) based trackers have been widely used in mobile robots due to their efficiency. However, underground coal mines are typically a low illumination environment, and tracking in this environment is a challenging problem that has not been adequately addressed in the literature. Thus, this paper proposes a Low-illumination Long-term Correlation Tracker (LLCT) and designs a visual tracking system for coal mine drilling robots. A low-illumination tracking framework combining image enhancement strategies and long-time tracking is proposed. A long-term memory correlation filter tracker with an interval update strategy is utilized. In addition, a local area illumination detection method is proposed to prevent the failure of the enhancement algorithm due to local over-exposure. A convenient image enhancement method is proposed to boost efficiency. Extensive experiments on popular object tracking benchmark datasets demonstrate that the proposed tracker significantly outperforms the baseline trackers, achieving high real-time performance. The tracker's performance is verified on an underground drilling robot in a coal mine. The results of the field experiment demonstrate that the performance of the novel tracking framework is better than that of state-of-the-art trackers in low-illumination environments.
引用
收藏
页数:20
相关论文
共 48 条
  • [1] Fully-Convolutional Siamese Networks for Object Tracking
    Bertinetto, Luca
    Valmadre, Jack
    Henriques, Joao F.
    Vedaldi, Andrea
    Torr, Philip H. S.
    [J]. COMPUTER VISION - ECCV 2016 WORKSHOPS, PT II, 2016, 9914 : 850 - 865
  • [2] Bolme DS, 2010, PROC CVPR IEEE, P2544, DOI 10.1109/CVPR.2010.5539960
  • [3] ECO: Efficient Convolution Operators for Tracking
    Danelljan, Martin
    Bhat, Goutam
    Khan, Fahad Shahbaz
    Felsberg, Michael
    [J]. 30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 6931 - 6939
  • [4] Discriminative Scale Space Tracking
    Danelljan, Martin
    Hager, Gustav
    Khan, Fahad Shahbaz
    Felsberg, Michael
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (08) : 1561 - 1575
  • [5] Beyond Correlation Filters: Learning Continuous Convolution Operators for Visual Tracking
    Danelljan, Martin
    Robinson, Andreas
    Khan, Fahad Shahbaz
    Felsberg, Michael
    [J]. COMPUTER VISION - ECCV 2016, PT V, 2016, 9909 : 472 - 488
  • [6] Convolutional Features for Correlation Filter Based Visual Tracking
    Danelljan, Martin
    Hager, Gustav
    Khan, Fahad Shahbaz
    Felsberg, Michael
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOP (ICCVW), 2015, : 621 - 629
  • [7] Adaptive Color Attributes for Real-Time Visual Tracking
    Danelljan, Martin
    Khan, Fahad Shahbaz
    Felsberg, Michael
    van de Weijer, Joost
    [J]. 2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, : 1090 - 1097
  • [8] Dong X, 2011, IEEE INT CON MULTI
  • [9] Galoogahi HK, 2017, IEEE I CONF COMP VIS, P1144, DOI [10.1109/ICCV.2017.128, 10.1109/ICCV.2017.129]
  • [10] Guo X., 2016, P 24 ACM INT C MULT, P87