Fatigue-constrained topology optimization using the constrained natural element method

被引:7
作者
Chen, Yanda [1 ]
Monteiro, Eric [1 ]
Koutiri, Imade [1 ]
Favier, Veronique [1 ]
机构
[1] HESAM Univ, Arts & Metiers Inst Technol, Lab PIMM, CNRS,CNAM,HESAM, 151 Bd Hop, F-75013 Paris, France
关键词
Topology optimization; High cycle fatigue; Constrained natural element method; Augmented Lagrangian formula; LIFE FATIGUE; STRESS; LIMIT; RELAXATION; BEHAVIOR;
D O I
10.1016/j.cma.2024.116821
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This research presents a topology optimization framework to achieve volume minimization with multi -axial high cycle fatigue criteria constraints by constrained natural element method. To solve the local minimization problem, the method based on the augmented Lagrangian formula is adopted. Special attention is given to the optimization results based on the stress -invariant fatigue criteria and the critical plane fatigue criteria under different loading conditions, including proportional and non -proportional loading.
引用
收藏
页数:21
相关论文
共 53 条
[1]   A NUMERICAL-METHOD FOR SOLVING PARTIAL-DIFFERENTIAL EQUATIONS ON HIGHLY IRREGULAR EVOLVING GRIDS [J].
BRAUN, J ;
SAMBRIDGE, M .
NATURE, 1995, 376 (6542) :655-660
[2]   Fatigue life assessment under a complex multiaxial load history: an approach based on damage mechanics [J].
Brighenti, R. ;
Carpinteri, A. ;
Vantadori, S. .
FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2012, 35 (02) :141-153
[3]   On an alternative approach to stress constraints relaxation in topology optimization [J].
Bruggi, Matteo .
STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2008, 36 (02) :125-141
[4]  
Chen JS, 2001, INT J NUMER METH ENG, V50, P435, DOI 10.1002/1097-0207(20010120)50:2<435::AID-NME32>3.0.CO
[5]  
2-A
[6]  
Chen Y., 2023, Stress constrained topology optimization using the constrained natural element method
[7]   Fatigue-resistance topology optimization of continuum structure by penalizing the cumulative fatigue damage [J].
Chen, Zhuo ;
Long, Kai ;
Wen, Pin ;
Nouman, Saeed .
ADVANCES IN ENGINEERING SOFTWARE, 2020, 150
[8]   A paradigm for higher-order polygonal elements in finite elasticity using a gradient correction scheme [J].
Chi, Heng ;
Talischi, Cameron ;
Lopez-Pamies, Oscar ;
Paulino, Glaucio H. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2016, 306 :216-251
[9]  
Crossland B., 1956, Proceedings of the International Conference on Fatigue of Metals, Institution of Mechanical Engineers, P138
[10]  
Dang VanK., 1989, BIAXIAL MULTIAXIAL F, P479