Lattice Boltzmann methods for combustion applications

被引:11
作者
Hosseini, Seyed Ali [1 ]
Boivin, Pierre [2 ]
Thevenin, Dominique [3 ]
Karlin, Ilya [1 ]
机构
[1] Swiss Fed Inst Technol, Dept Mech & Proc Engn, CH-8092 Zurich, Switzerland
[2] Aix Marseille Univ, CNRS, Cent Marseille, M2P2, F-13451 Marseille, France
[3] Univ Magdeburg Otto von Guericke, Lab Fluid Dynam & Tech Flows, D-39106 Magdeburg, Germany
基金
欧洲研究理事会;
关键词
Computational fluid dynamics; Combustion; Lattice Boltzmann method; Kinetic theory of gases; Direct numerical simulation; GRID REFINEMENT; BOUNDARY-CONDITIONS; NUMERICAL-SOLUTION; GAS-DYNAMICS; BLOOD-FLOW; MODEL; SIMULATION; DIFFUSION; EQUATION; FLUID;
D O I
10.1016/j.pecs.2023.101140
中图分类号
O414.1 [热力学];
学科分类号
摘要
Progress in recent years has opened the door for yet another area of application for the lattice Boltzmann method: Combustion simulations. Combustion is known to be a challenge for numerical tools due to, among many other reasons, a large number of variables and scales both in time and space. The present work aims to provide readers with an overview of recent progress and achievements in using the lattice Boltzmann method for combustion simulations. The article reviews some basic concepts from the lattice Boltzmann method and discusses different strategies to extend the method to compressible flows. Some of the lattice Boltzmann models developed to model mass transport in multi-species system are also discussed. The article provides a comprehensive overview of models and strategies developed in the past years to simulate combustion with the lattice Boltzmann method and discuss some of the most recent applications, remaining challenges and prospects.
引用
收藏
页数:22
相关论文
共 212 条
  • [1] The Taylor-Green vortex as a benchmark for high-fidelity combustion simulations using low-Mach solvers
    Abdelsamie, Abouelmagd
    Lartigue, Ghislain
    Frouzakis, Christos E.
    Thevenin, Dominique
    [J]. COMPUTERS & FLUIDS, 2021, 223
  • [2] The Gaussian-BGK model of Boltzmann equation with small Prandtl number
    Andries, P
    Le Tallec, P
    Perlat, JP
    Perthame, B
    [J]. EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 2000, 19 (06) : 813 - 830
  • [3] Minimal entropic kinetic models for hydrodynamics
    Ansumali, S
    Karlin, IV
    Öttinger, HC
    [J]. EUROPHYSICS LETTERS, 2003, 63 (06): : 798 - 804
  • [4] Lattice Boltzmann model for the simulation of multicomponent mixtures
    Arcidiacono, S.
    Karlin, I. V.
    Mantzaras, J.
    Frouzakis, C. E.
    [J]. PHYSICAL REVIEW E, 2007, 76 (04):
  • [5] Simulation of binary mixtures with the lattice Boltzman method
    Arcidiacono, S.
    Mantzaras, J.
    Ansumali, S.
    Karlin, I. V.
    Frouzakis, C.
    Boulouchos, K. B.
    [J]. PHYSICAL REVIEW E, 2006, 74 (05):
  • [6] Lattice Boltzmann simulation of catalytic reactions
    Arcidiacono, S.
    Mantzaras, J.
    Karlin, I. V.
    [J]. PHYSICAL REVIEW E, 2008, 78 (04):
  • [7] Extended lattice Boltzmann scheme for droplet combustion
    Ashna, Mostafa
    Rahimian, Mohammad Hassan
    Fakhari, Abbas
    [J]. PHYSICAL REVIEW E, 2017, 95 (05)
  • [8] Viscous coupling based lattice Boltzmann model for binary mixtures
    Asinari, P
    [J]. PHYSICS OF FLUIDS, 2005, 17 (06) : 1 - 22
  • [9] A consistent lattice Boltzmann equation with baroclinic coupling for mixtures
    Asinari, Pietro
    Luo, Li-Shi
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 227 (08) : 3878 - 3895
  • [10] Multiple-relaxation-time lattice Boltzmann scheme for homogeneous mixture flows with external force
    Asinari, Pietro
    [J]. PHYSICAL REVIEW E, 2008, 77 (05):