XRan: Explainable deep learning-based ransomware detection using dynamic analysis

被引:12
作者
Gulmez, Sibel [1 ]
Kakisim, Arzu Gorgulu [2 ]
Sogukpinar, Ibrahim [1 ]
机构
[1] Gebze Tech Univ, Comp Engn Dept, Kocaeli, Turkiye
[2] Istanbul Medeniyet Univ, Comp Engn Dept, Istanbul, Turkiye
关键词
Ransomware detection; Dynamic analysis; Deep learning; XAI; API calls; DLLs; Mutual exclusions;
D O I
10.1016/j.cose.2024.103703
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recently, the frequency and complexity of ransomware attacks have been increasing steadily, posing significant threats to individuals and organizations alike. While traditional signature -based antiransomware systems are effective in the detection of known threats, they struggle to identify new ransomware samples. To address this limitation, many researchers have focused on analyzing the behavior and actions of executables. During this dynamic analysis process, various dynamic -based features emerge, offering different perspectives on the executable's behavior, including Application Program Interface (API) call sequences, dynamic link libraries (DLLs), and mutual exclusions. Existing methods mostly perform machine or deep learning models for feature engineering and detection. These methods usually perform learning according to a single perspective or by combining data from different perspectives into the frequency domain. In this case, they may ignore the information from the other aspects or the sequence relationship between the features. In addition, learning models used in these solutions are mostly incomprehensible to humans, which could be an obstacle in terms of having an insight through the model's mentality and also ransomware's way of work. In this study, we provide XRan (eXplainable deep learning -based RANsomware detection using dynamic analysis), an Explainable Artificial Intelligence (XAI) supported ransomware detection system that combines different dynamic analysisbased sequences, each representing a different view of the executable, in order to enrich the feature space. XRan employs a Convolutional Neural Network (CNN) architecture to detect ransomware and two XAI models as Interpretable Model -Agnostic Explanations (LIME), and SHapley Additive exPlanations (SHAP) to provide local and global explanations for detection. Experimental results demonstrate that XRan provides up to 99.4% True Positive Rate (TPR), and outperforms the state-of-the-art methods.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Deep Learning-Based Dynamic Community Discovery
    Wu, Ling
    Ouyang, Yubin
    Shi, Cheng
    Chen, Chi-Hua
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS: DASFAA 2021 INTERNATIONAL WORKSHOPS, 2021, 12680 : 237 - 248
  • [42] Using deep graph learning to improve dynamic analysis-based malware detection in PE files
    Nguyen, Minh Tu
    Nguyen, Viet Hung
    Shone, Nathan
    JOURNAL OF COMPUTER VIROLOGY AND HACKING TECHNIQUES, 2024, 20 (01) : 153 - 172
  • [43] Android Ransomware Detection Using Supervised Machine Learning Techniques Based on Traffic Analysis
    Albin Ahmed, Amnah
    Shaahid, Afrah
    Alnasser, Fatima
    Alfaddagh, Shahad
    Binagag, Shadha
    Alqahtani, Deemah
    SENSORS, 2024, 24 (01)
  • [44] Detection and classification of arrhythmia using an explainable deep learning model
    Jo, Yong-Yeon
    Kwon, Joon-myoung
    Jeon, Ki-Hyun
    Cho, Yong-Hyeon
    Shin, Jae-Hyun
    Lee, Yoon-Ji
    Jung, Min-Seung
    Ban, Jang-Hyeon
    Kim, Kyung-Hee
    Lee, Soo Youn
    Park, Jinsik
    Oh, Byung-Hee
    JOURNAL OF ELECTROCARDIOLOGY, 2021, 67 : 124 - 132
  • [45] Federated Learning-Based Explainable Anomaly Detection for Industrial Control Systems
    Huong, Truong Thu
    Bac, Ta Phuong
    Ha, Kieu Ngan
    Hoang, Nguyen Viet
    Hoang, Nguyen Xuan
    Hung, Nguyen Tai
    Tran, Kim Phuc
    IEEE ACCESS, 2022, 10 : 53854 - 53872
  • [46] Detection of circulating plasma cells in peripheral blood using deep learning-based morphological analysis
    Chen, Pu
    Zhang, Lan
    Cao, Xinyi
    Jin, Xinyi
    Chen, Nan
    Zhang, Li
    Zhu, Jianfeng
    Pan, Baishen
    Wang, Beili
    Guo, Wei
    CANCER, 2024, 130 (10) : 1884 - 1893
  • [47] DEEP LEARNING-BASED DETECTION FOR TRANSMISSION TOWERS USING UAV IMAGES
    Wu, Huisheng
    Sun, Ruixue
    Ling, Xiaochun
    Zhong, Xianjin
    Gao, Xingguo
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 3740 - 3743
  • [48] A systematic review and analysis of deep learning-based underwater object detection
    Xu, Shubo
    Zhang, Minghua
    Song, Wei
    Mei, Haibin
    He, Qi
    Liotta, Antonio
    NEUROCOMPUTING, 2023, 527 : 204 - 232
  • [49] A Deforestation Detection Network Using Deep Learning-Based Semantic Segmentation
    Das, Pradeep Kumar
    Sahu, Adyasha
    Xavy, Dias V.
    Meher, Sukadev
    IEEE SENSORS LETTERS, 2024, 8 (01) : 1 - 4
  • [50] Prevention of smombie accidents using deep learning-based object detection
    Kim, Hyun-Seok
    Kim, Geon-Hwan
    Cho, You-Ze
    ICT EXPRESS, 2022, 8 (04): : 618 - 625