XRan: Explainable deep learning-based ransomware detection using dynamic analysis

被引:11
|
作者
Gulmez, Sibel [1 ]
Kakisim, Arzu Gorgulu [2 ]
Sogukpinar, Ibrahim [1 ]
机构
[1] Gebze Tech Univ, Comp Engn Dept, Kocaeli, Turkiye
[2] Istanbul Medeniyet Univ, Comp Engn Dept, Istanbul, Turkiye
关键词
Ransomware detection; Dynamic analysis; Deep learning; XAI; API calls; DLLs; Mutual exclusions;
D O I
10.1016/j.cose.2024.103703
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recently, the frequency and complexity of ransomware attacks have been increasing steadily, posing significant threats to individuals and organizations alike. While traditional signature -based antiransomware systems are effective in the detection of known threats, they struggle to identify new ransomware samples. To address this limitation, many researchers have focused on analyzing the behavior and actions of executables. During this dynamic analysis process, various dynamic -based features emerge, offering different perspectives on the executable's behavior, including Application Program Interface (API) call sequences, dynamic link libraries (DLLs), and mutual exclusions. Existing methods mostly perform machine or deep learning models for feature engineering and detection. These methods usually perform learning according to a single perspective or by combining data from different perspectives into the frequency domain. In this case, they may ignore the information from the other aspects or the sequence relationship between the features. In addition, learning models used in these solutions are mostly incomprehensible to humans, which could be an obstacle in terms of having an insight through the model's mentality and also ransomware's way of work. In this study, we provide XRan (eXplainable deep learning -based RANsomware detection using dynamic analysis), an Explainable Artificial Intelligence (XAI) supported ransomware detection system that combines different dynamic analysisbased sequences, each representing a different view of the executable, in order to enrich the feature space. XRan employs a Convolutional Neural Network (CNN) architecture to detect ransomware and two XAI models as Interpretable Model -Agnostic Explanations (LIME), and SHapley Additive exPlanations (SHAP) to provide local and global explanations for detection. Experimental results demonstrate that XRan provides up to 99.4% True Positive Rate (TPR), and outperforms the state-of-the-art methods.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Deep Learning-Based Melanoma Detection using Attention Maps
    Andleeb, Ifrah
    Elzein, Almiqdad
    Patel, Vaibhav Anilkumar
    Alginahi, Yasser M.
    2024 IEEE 3RD INTERNATIONAL CONFERENCE ON COMPUTING AND MACHINE INTELLIGENCE, ICMI 2024, 2024,
  • [42] Object detection and recognition using deep learning-based techniques
    Sharma, Preksha
    Gupta, Surbhi
    Vyas, Sonali
    Shabaz, Mohammad
    IET COMMUNICATIONS, 2023, 17 (13) : 1589 - 1599
  • [43] Deep Learning-Based Malware Detection Using PE Headers
    Nakrosis, Arnas
    Lagzdinyte-Budnike, Ingrida
    Paulauskaite-Taraseviene, Agne
    Paulikas, Giedrius
    Dapkus, Paulius
    INFORMATION AND SOFTWARE TECHNOLOGIES, ICIST 2022, 2022, 1665 : 3 - 18
  • [44] Quantitative Analysis of Deep Learning-Based Object Detection Models
    Elgazzar, Khalid
    Mostafi, Sifatul
    Dennis, Reed
    Osman, Youssef
    IEEE ACCESS, 2024, 12 : 70025 - 70044
  • [45] Deep Learning-Based Classification for Melanoma Detection Using XceptionNet
    Lu, Xinrong
    Zadeh, Y. A. Firoozeh Abolhasani
    JOURNAL OF HEALTHCARE ENGINEERING, 2022, 2022
  • [46] Deep learning-based fault detection in railway wheelsets using time series analysis
    Shaikh, Khurram
    Hussain, Imtiaz
    Chowdhry, Bhawani Shankar
    MEHRAN UNIVERSITY RESEARCH JOURNAL OF ENGINEERING AND TECHNOLOGY, 2023, 42 (03) : 154 - 159
  • [47] A Hybrid Phishing Detection System Using Deep Learning-based URL and Content Analysis
    Korkmaz, Mehmet
    Kocyigit, Emre
    Sahingoz, Ozgur Koray
    Diri, Banu
    ELEKTRONIKA IR ELEKTROTECHNIKA, 2022, 28 (05) : 80 - 89
  • [48] Early Ransomware Detection with Deep Learning Models
    Davidian, Matan
    Kiperberg, Michael
    Vanetik, Natalia
    FUTURE INTERNET, 2024, 16 (08)
  • [49] Ransomware Detection Using Limited Precision Deep Learning Structure in FPGA
    Alrawashdeh, Khaled
    Purdy, Carla
    NAECON 2018 - IEEE NATIONAL AEROSPACE AND ELECTRONICS CONFERENCE, 2018, : 152 - 157
  • [50] Explainable uncertainty quantifications for deep learning-based molecular property prediction
    Yang, Chu-, I
    Li, Yi-Pei
    JOURNAL OF CHEMINFORMATICS, 2023, 15 (01)