A NEW RELAXATION METHOD FOR OPTIMAL CONTROL OF SEMILINEAR ELLIPTIC VARIATIONAL INEQUALITIES OBSTACLE PROBLEMS

被引:0
作者
Osmani, El Hassene [1 ,2 ]
Haddou, Mounir [2 ]
Bensalem, Naceurdine [1 ]
机构
[1] Univ Ferhat Abbas Setif 1, Lab Fundamental & Numer Math, Setif 19000, Algeria
[2] Univ Rennes, INSA Rennes, CNRS, IRMAR UMR 6625, F-35000 Rennes, France
来源
NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION | 2023年 / 13卷 / 01期
关键词
Optimal control; Lagrange multipliers; Variational inequalities; Mathematical programming; Smoothing methods; IPOPT solver; MATHEMATICAL PROGRAMS;
D O I
10.3934/naco.2021061
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate optimal control problems governed by semilinear elliptic variational inequalities involving constraints on the state, and more precisely the obstacle problem. Since we adopt a numerical point of view, we first relax the feasible domain of the problem, then using both mathematical programming methods and penalization methods we get optimality conditions with smooth Lagrange multipliers. Some numerical experiments using the Interior Point Optimizer (IPOPT), Nonlinear Interior point Trust Region Optimization (KNITRO) and Sequential Quadratic Optimization Technique (SNOPT) are presented to verify the efficiency of our approach.
引用
收藏
页码:169 / 193
页数:25
相关论文
共 18 条
  • [1] Optimal control of partial differential equations based on the Variational Iteration Method
    Akkouche, Abderrahmane
    Maidi, Ahmed
    Aidene, Mohamed
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2014, 68 (05) : 622 - 631
  • [2] Barbu V., 1993, MATH SCI ENG
  • [3] BARBU V, 1984, RES NOTES MATH, V100
  • [4] General optimality conditions for constrained convex control problems
    Bergounioux, M
    Tiba, D
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1996, 34 (02) : 698 - 711
  • [5] Bergounioux M, 1997, APPL MATH OPT, V36, P147
  • [6] Optimal control of obstacle problems: Existence of Lagrange multipliers
    Bergounioux, M
    Mignot, F
    [J]. ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2000, 5 : 45 - 70
  • [7] Bergounioux M, 2002, Journal of Nonlinear and Convex Analysis, V31, P25
  • [8] Bermudez A., 1988, FREE BOUNDARY PROBLE, V121, P478
  • [9] An entropic regularization approach for mathematical programs with equilibrium constraints
    Birbil, SI
    Fang, SC
    Han, JY
    [J]. COMPUTERS & OPERATIONS RESEARCH, 2004, 31 (13) : 2249 - 2262
  • [10] Byrd RH, 2006, NONCONVEX OPTIM, V83, P35