Metal organic frameworks (MOFs)@conducting polymeric nanoarchitectures for electrochemical energy storage applications

被引:4
|
作者
Ogbu, James Ekuma [1 ]
Idumah, Christopher Igwe [2 ]
机构
[1] Ebonyi State Univ, Technol & Vocat, Abakaliki, Nigeria
[2] Nnamdi Azikiwe Univ Awka, Fac Engn, Dept Polymer Engn, PMB 5025, Awka, Anambra State, Nigeria
来源
POLYMER-PLASTICS TECHNOLOGY AND MATERIALS | 2024年 / 63卷 / 08期
关键词
Batteries covers; lithium-oxygen batteries; lithium-sulfur batteries; metal-ion batteries; MOF@CP nanoarchitectures; supercapacitors; zinc-air batteries; EXFOLIATED GRAPHENE NANOPLATELETS; FLAME RETARDANCY; EMERGING TRENDS; PERFORMANCE; COMPOSITES; BIOCOMPOSITES; INTERWOVEN; BATTERIES; MXENE;
D O I
10.1080/25740881.2024.2310529
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Recently emerging nanotechnological advancements has facilitated the embedment of metal-organic framework (MOFs) also referred as porous co-ordination polymers (PCPs), within conducting polymeric (CP) matrices (polyaniline, polypyrrole, poly(3,4-ethylenedioxythiophene) and so on), resulting in the fabrication of multifunctional MOF@CP nanoarchitectures for multifarious applications especially for electrochemical energy storage due to garnered enhanced features (low density, manipulatable porous architectures, elevated specific surface areas, aligned crystalline architectur)e, as well as controllable constitution at the molecular level. Therefore, this paper presents recently emerging trends in MOF@CP nanoarchitectures for applications in supercapacitors, lithium-sulfur batteries, metal-ion batteries, lithium-oxygen batteries, zinc-air batteries, batteries cover and other segments.
引用
收藏
页码:939 / 974
页数:36
相关论文
共 50 条
  • [31] Metal-organic frameworks marry carbon: Booster for electrochemical energy storage
    Xu, Jia
    Peng, Yi
    Xing, Wenqian
    Ding, Ziyu
    Zhang, Songtao
    Pang, Huan
    JOURNAL OF ENERGY STORAGE, 2022, 53
  • [32] Covalent organic frameworks: From materials design to electrochemical energy storage applications
    Lin, Jiamin
    Zhong, Yiren
    Tang, Lingyu
    Wang, Liuqi
    Yang, Mei
    Xia, Hui
    NANO SELECT, 2022, 3 (02): : 320 - 347
  • [33] Transition-Metal (Fe, Co, Ni) Based Metal-Organic Frameworks for Electrochemical Energy Storage
    Zheng, Shasha
    Li, Xinran
    Yan, Bingyi
    Hu, Qin
    Xu, Yuxia
    Xiao, Xiao
    Xue, Huaiguo
    Pang, Huan
    ADVANCED ENERGY MATERIALS, 2017, 7 (18)
  • [34] Metal organic frameworks for energy storage and conversion
    Zhao, Yang
    Song, Zhongxin
    Li, Xia
    Sun, Qian
    Cheng, Niancai
    Lawes, Stephen
    Sun, Xueliang
    ENERGY STORAGE MATERIALS, 2016, 2 : 35 - 62
  • [35] Trimetallic metal-organic frameworks and derived materials for environmental remediation and electrochemical energy storage and conversion
    Luo, Xinzhi
    Abazari, Reza
    Tahir, Muhammad
    Fan, Wei Keen
    Kumar, Anuj
    Kalhorizadeh, Tina
    Kirillov, Alexander M.
    Amani-Ghadim, Ali Reza
    Chen, Jing
    Zhou, Yingtang
    COORDINATION CHEMISTRY REVIEWS, 2022, 461
  • [36] Recent advances on surface mounted metal-organic frameworks for energy storage and conversion applications: Trends, challenges, and opportunities
    Shrivastav, Vaishali
    Mansi, Bhavana
    Gupta, Bhavana
    Dubey, Prashant
    Deep, Akash
    Nogala, Wojciech
    Shrivastav, Vishal
    Sundriyal, Shashank
    ADVANCES IN COLLOID AND INTERFACE SCIENCE, 2023, 318
  • [37] Combining metal-organic frameworks (MOFs) and covalent-organic frameworks (COFs): Emerging opportunities for new materials and applications
    Li, Zhixi
    Guo, Jun
    Wan, Yue
    Qin, Yutian
    Zhao, Meiting
    NANO RESEARCH, 2022, 15 (04) : 3514 - 3532
  • [38] Ethylenediamine-functionalized metal-organic frameworks for applications of electrochemical supercapacitors as an additive
    Kalyon, Hilal Yildirim
    Yilmaz, Ozan
    Gencten, Metin
    Gorduk, Semih
    Sahin, Yucel
    SYNTHETIC METALS, 2024, 306
  • [39] Cobalt based metal-organic frameworks and their derivatives for electrochemical energy conversion and storage
    Hua, Yi
    Li, Xiaxia
    Chen, Changyun
    Pang, Huan
    CHEMICAL ENGINEERING JOURNAL, 2019, 370 : 37 - 59
  • [40] The Applications of Metal-Organic Frameworks in Electrochemical Sensors
    Liu, Lantao
    Zhou, Yanli
    Liu, Shuang
    Xu, Maotian
    CHEMELECTROCHEM, 2018, 5 (01): : 6 - 19