Scalable High-Permittivity Polyimide Copolymer with Ultrahigh High-Temperature Capacitive Performance Enabled by Molecular Engineering

被引:36
作者
Dong, Jiufeng [1 ,2 ,3 ]
Li, Li [1 ,2 ,3 ]
Niu, Yujuan [1 ,2 ,3 ]
Pan, Zizhao [1 ,2 ,3 ]
Pan, Yupeng [4 ,5 ]
Sun, Liang [1 ,2 ,3 ]
Tan, Li [1 ,2 ,3 ]
Liu, Yuqi [1 ,2 ,3 ]
Xu, Xinwei [1 ,2 ,3 ]
Guo, Xugang [1 ,2 ,3 ]
Wang, Qing [6 ]
Wang, Hong [1 ,2 ,3 ]
机构
[1] Southern Univ Sci & Technol, Dept Mat Sci & Engn, Shenzhen 518055, Guangdong, Peoples R China
[2] Southern Univ Sci & Technol Shenzhen, Shenzhen Engn Res Ctr Novel Elect Informat Mat & D, Shenzhen 518055, Guangdong, Peoples R China
[3] Devices Southern Univ Sci & Technol Shenzhen, Guangdong Prov Key Lab Funct Oxide Mat, Shenzhen 518055, Guangdong, Peoples R China
[4] Southern Univ Sci & Technol, Shenzhen Grubbs Inst, Shenzhen 518055, Guangdong, Peoples R China
[5] Southern Univ Sci & Technol, Dept Chem, Shenzhen 518055, Guangdong, Peoples R China
[6] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
bandgap; high temperature; molecular engineering; permittivity; polymer capacitors; ENERGY DENSITY; POLYMER; DIELECTRICS;
D O I
10.1002/aenm.202303732
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Polymer capacitors are essential components of advanced electronic and power systems. However, the deficient high-temperature capacitive performance of polymer dielectrics fails to meet the demand for harsh condition applications, due to the mutually restrictive relationships in permittivity (epsilon r), glass transition temperature (Tg), and bandgap (Eg). Here, a modularized molecular engineering strategy is reported to enhance the high-temperature capacitive performance of polymer dielectrics. First, the potential influences of multiple structural units on epsilon r, Tg, and Eg of polymers are elucidated by comparing a set of polyimides (PIs). After screening out an excellent sulfonated PI with concurrently high epsilon r (4.2), Eg (3.4 eV), and Tg (311.2 degrees C), a semi-alicyclic sulfonyl-containing PI copolymer is further synthesized that exhibits a superior discharged energy density of 4.3 J cm-3 above 90% efficiency at 200 degrees C and 485 MV m-1. Density functional theory calculations demonstrate that the combination of polar sulfonyl group, ether linkage, and alicyclic group in the backbones of the copolymer decouples the dipole orientation and the segmental motion of backbones, and reduces conjugation effects of aromatic groups, thereby minimizing the polarization relaxation loss and the conduction loss while retaining excellent thermal stability and high permittivity. An original semi-alicyclic sulfonyl-containing polyimide copolymer that exhibits superior high-temperature capacitive performance, excellent charge-discharge stability, and ultrahigh power density is designed. The sulfonyl group, ether linkage, and alicyclic group in the backbones of the copolymer decouple the conjugation effects of the aromatic structure, while retaining excellent thermal stability, high permittivity, and wide bandgap.image
引用
收藏
页数:8
相关论文
共 66 条
[1]   Improving the Rotational Freedom of Polyetherimide: Enhancement of the Dielectric Properties of a Commodity High-Temperature Polymer Using a Structural Defect [J].
Alamri, Abdullah ;
Wu, Chao ;
Mishra, Ankit ;
Chen, Lihua ;
Li, Zongze ;
Deshmukh, Ajinkya ;
Zhou, Jierui ;
Yassin, Omer ;
Ramprasad, Rampi ;
Vashishta, Priya ;
Cao, Yang ;
Sotzing, Gregory .
CHEMISTRY OF MATERIALS, 2022, 34 (14) :6553-6558
[2]   Significantly enhanced high-temperature capacitive energy storage in cyclic olefin copolymer dielectric films via ultraviolet irradiation [J].
Bao, Zhiwei ;
Ding, Song ;
Dai, Zhizhan ;
Wang, Yiwei ;
Jia, Jiangheng ;
Shen, Shengchun ;
Yin, Yuewei ;
Li, Xiaoguang .
MATERIALS HORIZONS, 2023, 10 (06) :2120-2127
[3]  
Chen J, 2023, NATURE, V615, P62, DOI [10.1038/s41586-022-05671-4, 10.1038/s41586-023-06366-0]
[5]   A dielectric polymer with high electric energy density and fast discharge speed [J].
Chu, Baojin ;
Zhou, Xin ;
Ren, Kailiang ;
Neese, Bret ;
Lin, Minren ;
Wang, Qing ;
Bauer, F. ;
Zhang, Q. M. .
SCIENCE, 2006, 313 (5785) :334-336
[6]   Scalable Polyimide-Poly(Amic Acid) Copolymer Based Nanocomposites for High-Temperature Capacitive Energy Storage [J].
Dai, Zhizhan ;
Bao, Zhiwei ;
Ding, Song ;
Liu, Chuanchuan ;
Sun, Haoyang ;
Wang, He ;
Zhou, Xiang ;
Wang, Yuchen ;
Yin, Yuewei ;
Li, Xiaoguang .
ADVANCED MATERIALS, 2022, 34 (05)
[7]   Flexible polyolefin dielectric by strategic design of organic modules for harsh condition electrification [J].
Deshmukh, Ajinkya A. ;
Wu, Chao ;
Yassin, Omer ;
Mishra, Ankit ;
Chen, Lihua ;
Alamri, Abdullah ;
Li, Zongze ;
Zhou, Jierui ;
Mutlu, Zeynep ;
Sotzing, Michael ;
Rajak, Pankaj ;
Shukla, Stuti ;
Vellek, John ;
Baferani, Mohamadreza Arab ;
Cakmak, Mukerrem ;
Vashishta, Priya ;
Ramprasad, Rampi ;
Cao, Yang ;
Sotzing, Gregory .
ENERGY & ENVIRONMENTAL SCIENCE, 2022, 15 (03) :1307-1314
[8]   Excellent high-temperature dielectric energy storage of flexible all-organic polyetherimide/poly(arylene ether urea) polymer blend films [J].
Ding, Song ;
Bao, Zhiwei ;
Wang, Yiwei ;
Dai, Zhizhan ;
Jia, Jiangheng ;
Shen, Shengchun ;
Yin, Yuewei ;
Li, Xiaoguang .
JOURNAL OF POWER SOURCES, 2023, 570
[9]   Modulating electron traps of PEI-based nanocomposites for superb capacitive performance over a broad temperature range [J].
Ding, Xiangping ;
Pan, Zhongbin ;
Cheng, Yu ;
Chen, Hanxi ;
Li, Zhicheng ;
Fan, Xu ;
Liu, Jinjun ;
Yu, Jinhong ;
Zhai, Jiwei .
CHEMICAL ENGINEERING JOURNAL, 2023, 453
[10]   Scalable Polyimide-Organosilicate Hybrid Films for High-Temperature Capacitive Energy Storage [J].
Dong, Jiufeng ;
Li, Li ;
Qiu, Peiqi ;
Pan, Yupeng ;
Niu, Yujuan ;
Sun, Liang ;
Pan, Zizhao ;
Liu, Yuqi ;
Tan, Li ;
Xu, Xinwei ;
Xu, Chen ;
Luo, Guangfu ;
Wang, Qing ;
Wang, Hong .
ADVANCED MATERIALS, 2023, 35 (20)