Torsional flexibility in zinc-benzenedicarboxylate metal-organic frameworks

被引:2
|
作者
Meekel, Emily G. [1 ]
Nicholas, Thomas C. [1 ]
Slater, Ben [2 ]
Goodwin, Andrew L. [1 ]
机构
[1] Inorgan Chem Lab, South Pk Rd, Oxford OX1 3QR, England
[2] UCL, Dept Chem, 20 Gordon St, London WC1H 0AJ, England
基金
欧洲研究理事会; 英国工程与自然科学研究理事会;
关键词
SEPARATION; DESIGN; SORPTION; SOLIDS; MIL-53; ACID;
D O I
10.1039/d3ce01078c
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We explore the role and nature of torsional flexibility of carboxylate-benzene links in the structural chemistry of metal-organic frameworks (MOFs) based on Zn and benzenedicarboxlyate (bdc) linkers. A particular motivation is to understand the extent to which such flexibility is important in stabilising the unusual topologically aperiodic phase known as TRUMOF-1. We compare the torsion angle distributions of TRUMOF-1 models with those for crystalline Zn/1,3-bdc MOFs, including a number of new materials whose structures we report here. We find that both periodic and aperiodic Zn/1,3-bdc MOFs sample a similar range of torsion angles, and hence the formation of TRUMOF-1 does not require any additional flexibility beyond that already evident in chemically-related crystalline phases. Comparison with Zn/1,4-bdc MOFs does show, however, that the lower symmetry of the 1,3-bdc linker allows access to a broader range of torsion angles, reflecting a greater flexibility of this linker. An investigation of the impact of torsional flexibility of benzene dicarboxylate linkers in zinc metal-organic frameworks.
引用
收藏
页码:673 / 680
页数:8
相关论文
共 50 条
  • [1] On the Flexibility of Metal-Organic Frameworks
    Sarkisov, Lev
    Martin, Richard L.
    Haranczyk, Maciej
    Smit, Berend
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (06) : 2228 - 2231
  • [2] Dopant-Controlled Crystallization in Metal-Organic Frameworks: The Role of Copper(II) in Zinc 1,4-Benzenedicarboxylate
    Carson, Cantwell G.
    Ward, Jason
    Liu, Xiao Tao
    Schwartz, Justin
    Gerhardt, Rosario A.
    Tannenbaum, Rina
    JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (29) : 15322 - 15328
  • [3] Industrial applications of metal-organic frameworks
    Czaja, Alexander U.
    Trukhan, Natalia
    Mueller, Ulrich
    CHEMICAL SOCIETY REVIEWS, 2009, 38 (05) : 1284 - 1293
  • [4] Covalent Metal-Organic Frameworks: Fusion of Covalent Organic Frameworks and Metal-Organic Frameworks
    Wei, Rong-Jia
    Luo, Xiao
    Ning, Guo-Hong
    Li, Dan
    ACCOUNTS OF CHEMICAL RESEARCH, 2025, 58 (05) : 746 - 761
  • [5] Interplay between defects, disorder and flexibility in metal-organic frameworks
    Bennett, Thomas D.
    Cheetham, Anthony K.
    Fuchs, Alain H.
    Coudert, Francois-Xavier
    NATURE CHEMISTRY, 2017, 9 (01) : 11 - 16
  • [6] Construction of Metal-Organic Frameworks with Various Zinc-Tetrazolate Nanotubes
    Sun, Yayong
    Lu, Dong-Fei
    Wu, Kechen
    Zhou, Tianhua
    Wang, Fei
    Zhang, Jian
    CRYSTAL GROWTH & DESIGN, 2021, 21 (01) : 28 - 32
  • [7] Cadmium and zinc thiolate and selenolate metal-organic frameworks
    Turner, Dayna L.
    Stone, Kevin H.
    Stephens, Peter W.
    Vaid, Thomas P.
    DALTON TRANSACTIONS, 2010, 39 (21) : 5070 - 5073
  • [8] Metal-Organic Frameworks for Catalysis
    Huang Gang
    Chen Yuzhen
    Jiang Hailong
    ACTA CHIMICA SINICA, 2016, 74 (02) : 113 - 129
  • [9] Enantioselective catalysis with homochiral metal-organic frameworks
    Ma, Liqing
    Abney, Carter
    Lin, Wenbin
    CHEMICAL SOCIETY REVIEWS, 2009, 38 (05) : 1248 - 1256
  • [10] Ionothermal synthesis, structures, properties of cobalt-1,4-benzenedicarboxylate metal-organic frameworks
    Zhang, Zong-Hui
    Xu, Ling
    Jiao, Huan
    JOURNAL OF SOLID STATE CHEMISTRY, 2016, 238 : 217 - 222