Real-time Hand Movement Trajectory Tracking with Deep Learning

被引:0
作者
Wang, Po-Tong [1 ]
Sheu, Jia-Shing [2 ]
Shen, Chih-Fang [2 ]
机构
[1] Lunghwa Univ Sci & Technol, Dept Elect Engn, 300,Sec 1,Wanshou Rd, Taoyuan 333326, Taiwan
[2] Natl Taipei Univ Educ, Dept Comp Sci, 134,Sec 2,He Ping East Rd, Taipei 106, Taiwan
关键词
real-time hand tracking; deep learning; single-shot multibox detector (SSD); CAMShift; object detection; human-computer interaction (HCI); GESTURE RECOGNITION; INTERFACE;
D O I
10.18494/SAM4592
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
In this study, we employed deep learning to develop a real-time hand trajectory tracking system. Our primary approach integrates the MobileNetv2 single-shot multibox detector, known for accuracy, with the versatile CAMShift algorithm. This synergy ensures robust hand detection across diverse scenarios. Through rigorous testing on webcam images and leveraging advanced feature extraction methods, such as contour discernment and skin hue differentiation, we report an 88.17% increase in detection accuracy over traditional models. Moreover, with a latency of merely 0.0343 s, our system demonstrates its prowess in immersive gaming and assistive devices for individuals with disabilities
引用
收藏
页码:4117 / 4129
页数:14
相关论文
共 25 条
[1]   GESTO: A Glove for Enhanced Sensing and Touching Based on Inertial and Magnetic Sensors for Hand Tracking and Cutaneous Feedback [J].
Baldi, Tommaso Lisini ;
Scheggi, Stefano ;
Meli, Leonardo ;
Mohammadi, Mostafa ;
Prattichizzo, Domenico .
IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, 2017, 47 (06) :1066-1076
[2]  
Bambach S., 2015, PROC IEEE INTERACT C, V1949, DOI [10.1109/ICCVW.2015.246, DOI 10.1109/ICCVW.2015.246]
[3]   Multi-objective optimization for hand posture recognition [J].
Chevtchenko, Sergio F. ;
Vale, Rafaella F. ;
Macario, Valmir .
EXPERT SYSTEMS WITH APPLICATIONS, 2018, 92 :170-181
[4]  
CORTES C, 1995, MACH LEARN, V20, P273, DOI 10.1023/A:1022627411411
[5]   Dual-Hand Detection for Human-Robot Interaction by a Parallel Network Based on Hand Detection and Body Pose Estimation [J].
Gao, Qing ;
Liu, Jinguo ;
Ju, Zhaojie ;
Zhang, Xin .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2019, 66 (12) :9663-9672
[6]  
Guo J., 2013, Mech. Mater, V3, P849, DOI [10.4028/www.scientific.net/AMM.311-313.849, DOI 10.4028/WWW.SCIENTIFIC.NET/AMM.311-313.849]
[7]  
Halder A., 2021, Int. J. Res. Publ. Rev, V3, P9, DOI [10.17583/ijrpr.2021.5405, DOI 10.17583/IJRPR.2021.5405]
[8]   High-Speed Tracking with Kernelized Correlation Filters [J].
Henriques, Joao F. ;
Caseiro, Rui ;
Martins, Pedro ;
Batista, Jorge .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2015, 37 (03) :583-596
[9]  
Jeong J., 2014, Soft Comput, V19, P815, DOI [10.1007/s00500-014-1310-x, DOI 10.1007/S00500-014-1310-X]
[10]   Gesture-Recognizing Hand-Held Interface with Vibrotactile Feedback for 3D Interaction [J].
Kim, Sangki ;
Park, Gunhyuk ;
Yim, Sunghoon ;
Choi, Seungmoon ;
Choi, Seungjin .
IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2009, 55 (03) :1169-1177