Correlating Young's Modulus with High Thermal Conductivity in Organic Conjugated Small Molecules

被引:3
作者
Zeng, Jianhui [1 ,2 ]
Liang, Ting [3 ]
Zhang, Jingjing [2 ,4 ]
Liu, Daoqing [2 ]
Li, Shiang [5 ]
Lu, Xinhui [5 ]
Han, Meng [2 ]
Yao, Yimin [2 ]
Xu, Jian-Bin [3 ]
Sun, Rong [2 ]
Li, Liejun [1 ]
机构
[1] South China Univ Technol, Sch Mech & Automot Engn, Guangdong Key Lab Proc & Forming Adv Met Mat, 381 Wushan, Guangzhou 510640, Peoples R China
[2] Chinese Acad Sci, Shenzhen Inst Adv Elect Mat, Shenzhen Inst Adv Technol, Natl Key Lab Mat Integrated Circuits, Shenzhen 518055, Peoples R China
[3] Chinese Univ Hong Kong, Dept Elect Engn, Hong Kong, Peoples R China
[4] Univ Sci & Technol China, Nano Sci & Technol Inst, 166 Renai Rd, Suzhou 215000, Peoples R China
[5] Chinese Univ Hong Kong, Dept Phys, Hong Kong 999077, Peoples R China
基金
中国国家自然科学基金;
关键词
N,N '-dioctyl-3,4,9,10-perylenedicarboximide; organic conjugated small molecule; physical vapor transport; thermal conductivity; time-domain thermoreflectance; PTCDI-C8; TRANSPORT; EMISSION; FIELD;
D O I
10.1002/smll.202309338
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Attaining elevated thermal conductivity in organic materials stands as a coveted objective, particularly within electronic packaging, thermal interface materials, and organic matrix heat exchangers. These applications have reignited interest in researching thermally conductive organic materials. The understanding of thermal transport mechanisms in these organic materials is currently constrained. This study concentrates on N, N'-dioctyl-3,4,9,10-perylenedicarboximide (PTCDI-C-8), an organic conjugated crystal. A correlation between elevated thermal conductivity and augmented Young's modulus is substantiated through meticulous experimentation. Achievement via employing the physical vapor transport method, capitalizing on the robust C & boxH;C covalent linkages running through the organic matrix chain, bolstered by pi-pi stacking and noncovalent affiliations that intertwine the chains. The coexistence of these dynamic interactions, alongside the perpendicular alignment of PTCDI-C-8 molecules, is confirmed through structural analysis. PTCDI-C-8 thin film exhibits an out-of-plane thermal conductivity of 3.1 +/- 0.1 W m(-1) K-1, as determined by time-domain thermoreflectance. This outpaces conventional organic materials by an order of magnitude. Nanoindentation tests and molecular dynamics simulations elucidate how molecular orientation and intermolecular forces within PTCDI-C-8 molecules drive the film's high Young's modulus, contributing to its elevated thermal conductivity. This study's progress offers theoretical guidance for designing high thermal conductivity organic materials, expanding their applications and performance potential.
引用
收藏
页数:11
相关论文
共 50 条
[21]   Unique thermal conductivity, Young's modulus and local structure of 72SnO-28P2O5 glass [J].
Sakamoto, Akihiko ;
Himei, Yusuke ;
Shinozaki, Kenji ;
Honma, Tsuyoshi ;
Komatsu, Takayuki .
JOURNAL OF THE CERAMIC SOCIETY OF JAPAN, 2016, 124 (05) :606-612
[22]   The thermal conductivity of high modulus Zylon fibers between 400 mK and 4 K [J].
Wikus, Patrick ;
Figueroa-Feliciano, Enectali ;
Hertel, Scott A. ;
Leman, Steven W. ;
McCarthy, Kevin A. ;
Rutherford, John M. .
CRYOGENICS, 2008, 48 (11-12) :515-517
[23]   Construction of a thermal conductivity measurement system for small single crystals of organic conductors [J].
Nomoto, Tetsuya ;
Imajo, Shusaku ;
Yamashita, Satoshi ;
Akutsu, Hiroki ;
Nakazawa, Yasuhiro ;
Krivchikov, Alexander I. .
JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2019, 135 (05) :2831-2836
[24]   Construction of a thermal conductivity measurement system for small single crystals of organic conductors [J].
Tetsuya Nomoto ;
Shusaku Imajo ;
Satoshi Yamashita ;
Hiroki Akutsu ;
Yasuhiro Nakazawa ;
Alexander I. Krivchikov .
Journal of Thermal Analysis and Calorimetry, 2019, 135 :2831-2836
[25]   Correlating Gas Permeability and Young's Modulus during the Physical Aging of Polymers of Intrinsic Microporosity Using Atomic Force Microscopy [J].
Longo, Mariagiulia ;
De Santo, Maria Penelope ;
Esposito, Elisa ;
Fuoco, Alessio ;
Monteleone, Marcello ;
Giorno, Lidietta ;
Comesana-Gandara, Bibiana ;
Chen, Jie ;
Bezzu, C. Grazia ;
Carta, Mariolino ;
Rose, Ian ;
McKeown, Neil B. ;
Jansen, Johannes C. .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2020, 59 (12) :5381-5391
[26]   Anomalous Pressure-Resilient Thermal Conductivity in Hybrid Perovskites with Strong Lattice Anharmonicity and Small Bulk Modulus [J].
Yang, Jin ;
Jain, Ankit ;
Fan, Liwu ;
Ang, Yee Sin ;
Li, Hanying ;
Ong, Wee-Liat .
CHEMISTRY OF MATERIALS, 2023, 35 (13) :5185-5192
[27]   Modifying the thermal conductivity of small molecule organic semiconductor thin films with metal nanoparticles [J].
Wang, Xinyu ;
Parrish, Kevin D. ;
Malen, Jonathan A. ;
Chan, Paddy K. L. .
SCIENTIFIC REPORTS, 2015, 5
[28]   Anomalous behavior of thermal conductivity at high temperatures for molecular crystals composed of flexible molecules [J].
Horbatenko, Yuliia V. ;
Romantsova, Olesia O. ;
Korolyuk, Oksana A. ;
Jezowski, Andrzej ;
Szewczyk, Dania ;
Tamarit, Joseph Li ;
Krivchikov, Alexander I. .
JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2019, 127 (151-157) :151-157
[29]   The high conductivity of iron and thermal evolution of the Earth's core [J].
Gomi, Hitoshi ;
Ohta, Kenji ;
Hirose, Kei ;
Labrosse, Stephane ;
Caracas, Razvan ;
Verstraete, Matthieu J. ;
Hernlund, John W. .
PHYSICS OF THE EARTH AND PLANETARY INTERIORS, 2013, 224 :88-103
[30]   Calculation of hydrogen's thermal conductivity at moderate and high densities [J].
Behnejad, H. ;
Pedram, A. .
CHEMICAL PHYSICS, 2006, 325 (02) :351-358