Recursive Quantile Estimation: Non-Asymptotic Confidence Bounds

被引:0
|
作者
Chen, Likai [1 ]
Keilbar, Georg [2 ]
Wu, Wei Biao [3 ]
机构
[1] Washington Univ, Dept Math & Stat, St Louis, MO 63130 USA
[2] Univ Vienna, Dept Stat & Operat Res, Vienna, Austria
[3] Univ Chicago, Dept Stat, Chicago, IL USA
关键词
Finite sample bounds; quantiles; stochastic gradient descent; Polyak-Ruppert averaging; recursive estimation; STOCHASTIC-APPROXIMATION; HILBERT-SPACES; REGRESSION; INFERENCE; RISK;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper considers the recursive estimation of quantiles using the stochastic gradient descent (SGD) algorithm with Polyak-Ruppert averaging. The algorithm offers a computationally and memory efficient alternative to the usual empirical estimator. Our focus is on studying the non-asymptotic behavior by providing exponentially decreasing tail probability bounds under mild assumptions on the smoothness of the density functions. This novel non-asymptotic result is based on a bound of the moment generating function of the SGD estimate. We apply our result to the problem of best arm identification in a multi-armed stochastic bandit setting under quantile preferences.
引用
收藏
页数:25
相关论文
共 39 条
  • [21] Non-asymptotic error estimates for the Laplace approximation in Bayesian inverse problems
    Helin, Tapio
    Kretschmann, Remo
    NUMERISCHE MATHEMATIK, 2022, 150 (02) : 521 - 549
  • [22] A hierarchical Bayesian non-asymptotic extreme value model for spatial data
    Stolf, Federica
    Canale, Antonio
    ENVIRONMETRICS, 2023, 34 (07)
  • [23] Prospect Performance Evaluation: Making a Case for a Non-asymptotic UMPU Test
    Bai, Zhidong
    Hui, Yongchang
    Wong, Wing-Keung
    Zitikis, Ricardas
    JOURNAL OF FINANCIAL ECONOMETRICS, 2012, 10 (04) : 703 - 732
  • [24] Non-Asymptotic Guarantees for Robust Statistical Learning under Infinite Variance Assumption
    Xu, Lihu
    Yao, Fang
    Yao, Qiuran
    Zhang, Huiming
    JOURNAL OF MACHINE LEARNING RESEARCH, 2023, 24
  • [25] Non-parametric Learning of Stochastic Differential Equations with Non-asymptotic Fast Rates of Convergence
    Bonalli, Riccardo
    Rudi, Alessandro
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2025,
  • [26] Normal Approximation for Stochastic Gradient Descent via Non-Asymptotic Rates of Martingale CLT
    Anastasiou, Andreas
    Balasubramanian, Krishnakumar
    Erdogdu, Murat A.
    CONFERENCE ON LEARNING THEORY, VOL 99, 2019, 99
  • [27] NON-ASYMPTOTIC ORACLE INEQUALITIES FOR THE LASSO AND GROUP LASSO IN HIGH DIMENSIONAL LOGISTIC MODEL
    Kwemou, Marius
    ESAIM-PROBABILITY AND STATISTICS, 2016, 20 : 309 - 331
  • [28] Non-Asymptotic Analysis of an Optimal Algorithm for Network-Constrained Averaging With Noisy Links
    Noorshams, Nima
    Wainwright, Martin J.
    IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2011, 5 (04) : 833 - 844
  • [29] Parametric estimation of non-crossing quantile functions
    Sottile, Gianluca
    Frumento, Paolo
    STATISTICAL MODELLING, 2023, 23 (02) : 173 - 195
  • [30] Non-Asymptotic Analysis for Two Time-scale TDC with General Smooth Function Approximation
    Wang, Yue
    Zou, Shaofeng
    Zhou, Yi
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34