MEAN-FIELD SPARSE OPTIMAL CONTROL OF SYSTEMS WITH ADDITIVE WHITE NOISE

被引:1
作者
Ascione, Giacomo [1 ]
Castorina, Daniele [2 ]
Solombrino, Francesco [2 ]
机构
[1] Scuoa Super Meridionale, I-80138 Naples, Italy
[2] Univ Napoli Federico II, Dipartimento Matemat & Applicazioni Renato Cacciop, I-80138 Naples, Italy
关键词
mean-field limit; I.-limit; optimal control with ODE-SDE constraints; EQUATIONS; LIMIT; PROPAGATION;
D O I
10.1137/22M148906X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyze the problem of controlling a multiagent system with additive white noise through parsimonious interventions on a selected subset of the agents (leaders). For such a controlled system with an SDE constraint, we introduce a rigorous limit process toward an infinite dimensional optimal control problem constrained by the coupling of a system of ODE for the leaders with a McKean-Vlasov type of SDE, governing the dynamics of the prototypical follower. The latter is, under some assumptions on the distribution of the initial data, equivalent with a (nonlinear parabolic) PDE-ODE system. The derivation of the limit mean-field optimal control problem is achieved by linking the mean-field limit of the governing equations together with the I.-limit of the cost functionals for the finite-dimensional problems.
引用
收藏
页码:6965 / 6990
页数:26
相关论文
共 43 条
[1]   Mean-Field Selective Optimal Control via Transient Leadership [J].
Albi, Giacomo ;
Almi, Stefano ;
Morandotti, Marco ;
Solombrino, Francesco .
APPLIED MATHEMATICS AND OPTIMIZATION, 2022, 85 (02)
[2]   Mean Field Control Hierarchy [J].
Albi, Giacomo ;
Choi, Young-Pil ;
Fornasier, Massimo ;
Kalise, Dante .
APPLIED MATHEMATICS AND OPTIMIZATION, 2017, 76 (01) :93-135
[3]   INVISIBLE CONTROL OF SELF-ORGANIZING AGENTS LEAVING UNKNOWN ENVIRONMENTS [J].
Albi, Giacomo ;
Bongini, Mattia ;
Cristiani, Emiliano ;
Kalise, Dante .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2016, 76 (04) :1683-1710
[4]   Herding stochastic autonomous agents via local control rules and online target selection strategies [J].
Auletta, Fabrizia ;
Fiore, Davide ;
Richardson, Michael J. ;
di Bernardo, Mario .
AUTONOMOUS ROBOTS, 2022, 46 (03) :469-481
[5]   Uniqueness of solutions to weak parabolic equations for measures [J].
Bogachev, V. I. ;
Da Prato, G. ;
Roeckner, M. ;
Stannat, W. .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2007, 39 :631-640
[6]   STOCHASTIC MEAN-FIELD LIMIT: NON-LIPSCHITZ FORCES AND SWARMING [J].
Bolley, Francois ;
Canizo, Jose A. ;
Carrillo, Jose A. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2011, 21 (11) :2179-2210
[7]   Mean-Field Pontryagin Maximum Principle [J].
Bongini, Mattia ;
Fornasier, Massimo ;
Rossi, Francesco ;
Solombrino, Francesco .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2017, 175 (01) :1-38
[8]   Necessary Optimality Conditions for Optimal Control Problems in Wasserstein Spaces [J].
Bonnet, Benoit ;
Frankowska, Helene .
APPLIED MATHEMATICS AND OPTIMIZATION, 2021, 84 (SUPPL 2) :1281-1330
[9]   A Pontryagin Maximum Principle in Wasserstein spaces for constrained optimal control problems [J].
Bonnet, Benoit .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2019, 25
[10]   The Pontryagin Maximum Principle in the Wasserstein Space [J].
Bonnet, Benoit ;
Rossi, Francesco .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2019, 58 (01)