Dislocation hyperbolic augmented Lagrangian algorithm for nonconvex optimization

被引:4
作者
Ramirez, Lennin Mallma [1 ]
Maculan, Nelson [2 ]
Xavier, Adilson Elias [1 ]
Xavier, Vinicius Layter [3 ]
机构
[1] Univ Fed Rio de Janeiro, Syst Engn & Comp Sci Program COPPE, Rio De Janeiro, Brazil
[2] Univ Fed Rio de Janeiro, Syst Engn & Comp Sci Program Appl Math COPPE & IM, Rio De Janeiro, Brazil
[3] Univ Estado Rio De Janeiro, Inst Math & Stat, Grad Program Computat Sci, Rio De Janeiro, Brazil
关键词
Dislocation hyperbolic augmented Lagrangian; nonlinear programming; nonconvex problem; convergence; complementarity condition; CONVERGENCE;
D O I
10.1051/ro/2023153
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The dislocation hyperbolic augmented Lagrangian algorithm (DHALA) solves the nonconvex programming problem considering an update rule for its penalty parameter and considering a condition to ensure the complementarity condition. in this work, we ensure that the sequence generated by DHALA converges to a Karush-Kuhn-Tucker (KKT) point, and we present computational experiments to demonstrate the performance of our proposed algorithm.
引用
收藏
页码:2941 / 2950
页数:10
相关论文
共 30 条
[1]   ON AUGMENTED LAGRANGIAN METHODS WITH GENERAL LOWER-LEVEL CONSTRAINTS [J].
Andreani, R. ;
Birgin, E. G. ;
Martinez, J. M. ;
Schuverdt, M. L. .
SIAM JOURNAL ON OPTIMIZATION, 2008, 18 (04) :1286-1309
[2]   A Mixed Logarithmic Barrier-Augmented Lagrangian Method for Nonlinear Optimization [J].
Armand, Paul ;
Omheni, Riadh .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2017, 173 (02) :523-547
[3]  
Bertsekas D.P., 1982, CONSTRAINED OPTIMIZA
[4]  
Birgin EG, 2014, FUND ALGORITHMS, P1, DOI 10.1137/1.9781611973365
[5]   Numerical comparison of Augmented Lagrangian algorithms for nonconvex problems [J].
Birgin, EG ;
Castillo, RA ;
Martínez, JM .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2005, 31 (01) :31-55
[6]   The boundedness of penalty parameters in an augmented Lagrangian method with constrained subproblems [J].
Birgin, Ernesto G. ;
Fernandez, Damian ;
Martinez, J. M. .
OPTIMIZATION METHODS & SOFTWARE, 2012, 27 (06) :1001-1024
[7]   Computational experience with penalty-barrier methods for nonlinear programming [J].
Breitfeld, MG ;
Shanno, DF .
ANNALS OF OPERATIONS RESEARCH, 1996, 62 :439-463
[8]   A LIMITED MEMORY ALGORITHM FOR BOUND CONSTRAINED OPTIMIZATION [J].
BYRD, RH ;
LU, PH ;
NOCEDAL, J ;
ZHU, CY .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1995, 16 (05) :1190-1208
[9]   A globally convergent Lagrangian barrier algorithm for optimization with general inequality constraints and simple bounds [J].
Conn, AR ;
Gould, N ;
Toint, PL .
MATHEMATICS OF COMPUTATION, 1997, 66 (217) :261-+
[10]   An augmented Lagrangian function with improved exactness properties [J].
Di Pillo, G ;
Lucidi, S .
SIAM JOURNAL ON OPTIMIZATION, 2001, 12 (02) :376-406