Majority double Roman domination in graphs

被引:0
作者
Prabhavathy, S. Anandha [1 ]
Hamid, I. Sahul [2 ]
机构
[1] Velammal Coll Engn & Technol Autonomous, Dept Math, Madurai, India
[2] Madura Coll, Dept Math, Madurai, India
关键词
Majority double Roman domination; majority double Roman number;
D O I
10.1142/S1793830923500817
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A majority double Roman dominating function (MDRDF) on a graph G = (V, E) is a function f : V -> {-1, +1,2, 3} such that (i) every vertex v with f(v) = -1 is adjacent to at least two vertices assigned with 2 or to at least one vertex w with f(w) = 3, (ii) every vertex v with f(v) = 1 is adjacent to at least one vertex w with f(w) >= 2 and (iii) Sigma(u is an element of N[v]) f (u) >= 1, for at least half of the vertices in G. The weight of an MDRDF is the sum of its function values over all vertices. The majority double Roman domination number of a graph G, denoted by (gamma MDR)(G), is defined as (gamma MDR)(G) = min{w(f) | f is an MDRDF of G}. In this paper, we introduce and study the majority double Roman domination number on some classes of graphs.
引用
收藏
页数:9
相关论文
共 15 条
[1]   Signed Roman domination in graphs [J].
Ahangar, H. Abdollahzadeh ;
Henning, Michael A. ;
Loewenstein, Christian ;
Zhao, Yancai ;
Samodivkin, Vladimir .
JOURNAL OF COMBINATORIAL OPTIMIZATION, 2014, 27 (02) :241-255
[2]   Signed double Roman domination in graphs [J].
Ahangar, Hossein Abdollahzadeh ;
Chellali, Mustapha ;
Sheikholeslami, Seyed Mahmoud .
DISCRETE APPLIED MATHEMATICS, 2019, 257 :1-11
[3]   TOTAL ROMAN DOMINATION IN GRAPHS [J].
Ahangar, Hossein Abdollahzadeh ;
Henning, Michael A. ;
Samodivkin, Vladimir ;
Yero, Ismael G. .
APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2016, 10 (02) :501-517
[4]   Double Roman domination [J].
Beeler, Robert A. ;
Haynes, Teresa W. ;
Hedetniemi, Stephen T. .
DISCRETE APPLIED MATHEMATICS, 2016, 211 :23-29
[5]   THE DIFFERENTIAL AND THE ROMAN DOMINATION NUMBER OF A GRAPH [J].
Bermudo, Sergio ;
Fernau, Henning ;
Sigarreta, Jose M. .
APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2014, 8 (01) :155-171
[6]   MAJORITY DOMINATION IN GRAPHS [J].
BROERE, I ;
HATTINGH, JH ;
HENNING, MA ;
MCRAE, AA .
DISCRETE MATHEMATICS, 1995, 138 (1-3) :125-135
[7]   EXTREMAL PROBLEMS FOR ROMAN DOMINATION [J].
Chambers, Erin W. ;
Kinnersley, Bill ;
Prince, Noah ;
West, Douglas B. .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2009, 23 (03) :1575-1586
[8]  
Chartrand G., 2005, GRAPHS DIGRAPHS, V4th
[9]   STRONG EQUALITY BETWEEN THE ROMAN DOMINATION AND INDEPENDENT ROMAN DOMINATION NUMBERS IN TREES [J].
Chellali, Mustapha ;
Rad, Nader Jafari .
DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2013, 33 (02) :337-346
[10]  
Haynes T. W., 1998, Domination in Graphs: Advanced Topics