New deep learning-based methods for visualizing ecosystem properties using environmental DNA metabarcoding data

被引:2
作者
Lamperti, Letizia [1 ,2 ,3 ]
Sanchez, Theophile [2 ,3 ]
Moussi, Sara Si [4 ]
Mouillot, David [5 ,6 ]
Albouy, Camille [2 ,3 ]
Fluck, Benjamin [2 ,3 ]
Bruno, Morgane [1 ]
Valentini, Alice [7 ]
Pellissier, Loic [2 ,3 ]
Manel, Stephanie [1 ,6 ]
机构
[1] PSL Univ, Univ Montpellier, EPHE, CEFE,CNRS,IRD, Montpellier, France
[2] Swiss Fed Inst Technol, Dept Environm Syst Sci, Ecosyst & Landscape Evolut, Zurich, Switzerland
[3] Swiss Fed Inst Forest Snow & Landscape Res WSL, Land Change Sci Res Unit, Ecosyst & Landscape Evolut, Birmensdorf, Switzerland
[4] Univ Grenoble Alpes, Univ Savoie MontBlanc, CNRS, Lab Ecol Alpine, Grenoble, France
[5] Univ Montpellier, MARBEC, CNRS, IFREMER,IRD, Montpellier, France
[6] Inst Univ France, Paris, France
[7] SPYGEN, Le Bourget Du Lac, France
关键词
biodiversity monitoring; data visualization; deep learning; deep metric learning; environmental DNA; machine learning; neural networks; variational autoencoder; NEURAL-NETWORKS; ECOLOGY;
D O I
10.1111/1755-0998.13861
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Environmental DNA (eDNA) metabarcoding provides an efficient approach for documenting biodiversity patterns in marine and terrestrial ecosystems. The complexity of these data prevents current methods from extracting and analyzing all the relevant ecological information they contain, and new methods may provide better dimensionality reduction and clustering. Here we present two new deep learning-based methods that combine different types of neural networks (NNs) to ordinate eDNA samples and visualize ecosystem properties in a two-dimensional space: the first is based on variational autoencoders and the second on deep metric learning. The strength of our new methods lies in the combination of two inputs: the number of sequences found for each molecular operational taxonomic unit (MOTU) detected and their corresponding nucleotide sequence. Using three different datasets, we show that our methods accurately represent several biodiversity indicators in a two-dimensional latent space: MOTU richness per sample, sequence a-diversity per sample, Jaccard's and sequence beta-diversity between samples. We show that our nonlinear methods are better at extracting features from eDNA datasets while avoiding the major biases associated with eDNA. Our methods outperform traditional dimension reduction methods such as Principal Component Analysis, t-distributed Stochastic Neighbour Embedding, Nonmetric Multidimensional Scaling and Uniform Manifold Approximation and Projection for dimension reduction. Our results suggest that NNs provide a more efficient way of extracting structure from eDNA metabarcoding data, thereby improving their ecological interpretation and thus biodiversity monitoring.
引用
收藏
页码:1946 / 1958
页数:13
相关论文
共 72 条
  • [1] Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265
  • [2] A National Scale "BioBlitz" Using Citizen Science and eDNA Metabarcoding for Monitoring Coastal Marine Fish
    Agersnap, Sune
    Sigsgaard, Eva Egelyng
    Jensen, Mads Reinholdt
    Avila, Marcelo De Paula
    Carl, Henrik
    Moller, Peter Rask
    Kros, Simon Leed
    Knudsen, Steen Wilhelm
    Wisz, Mary S.
    Thomsen, Philip Francis
    [J]. FRONTIERS IN MARINE SCIENCE, 2022, 9
  • [3] Environmental DNA reveals tropical shark diversity in contrasting levels of anthropogenic impact
    Bakker, Judith
    Wangensteen, Owen S.
    Chapman, Demian D.
    Boussarie, Germain
    Buddo, Dayne
    Guttridge, Tristan L.
    Hertler, Heidi
    Mouillot, David
    Vigliola, Laurent
    Mariani, Stefano
    [J]. SCIENTIFIC REPORTS, 2017, 7
  • [4] Visualizing population structure with variational autoencoders
    Battey, C. J.
    Coffing, Gabrielle C.
    Kern, Andrew D.
    [J]. G3-GENES GENOMES GENETICS, 2021, 11 (01):
  • [5] Dimensionality reduction for visualizing single-cell data using UMAP
    Becht, Etienne
    McInnes, Leland
    Healy, John
    Dutertre, Charles-Antoine
    Kwok, Immanuel W. H.
    Ng, Lai Guan
    Ginhoux, Florent
    Newell, Evan W.
    [J]. NATURE BIOTECHNOLOGY, 2019, 37 (01) : 38 - +
  • [6] Towards the fully automated monitoring of ecological communities
    Besson, Marc
    Alison, Jamie
    Bjerge, Kim
    Gorochowski, Thomas E.
    Hoye, Toke T.
    Jucker, Tommaso
    Mann, Hjalte M. R.
    Clements, Christopher F.
    [J]. ECOLOGY LETTERS, 2022, 25 (12) : 2753 - 2775
  • [7] Environmental DNA for wildlife biology and biodiversity monitoring
    Bohmann, Kristine
    Evans, Alice
    Gilbert, M. Thomas P.
    Carvalho, Gary R.
    Creer, Simon
    Knapp, Michael
    Yu, Douglas W.
    de Bruyn, Mark
    [J]. TRENDS IN ECOLOGY & EVOLUTION, 2014, 29 (06) : 358 - 367
  • [8] Environmental DNA metabarcoding reveals and unpacks a biodiversity conservation paradox in Mediterranean marine reserves
    Boulanger, Emilie
    Loiseau, Nicolas
    Valentini, Alice
    Arnal, Veronique
    Boissery, Pierre
    Dejean, Tony
    Deter, Julie
    Guellati, Nacim
    Holon, Florian
    Juhel, Jean-Baptiste
    Lenfant, Philippe
    Manel, Stephanie
    Mouillot, David
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2021, 288 (1949)
  • [9] Improving the reliability of eDNA data interpretation
    Burian, Alfred
    Mauvisseau, Quentin
    Bulling, Mark
    Domisch, Sami
    Qian, Song
    Sweet, Michael
    [J]. MOLECULAR ECOLOGY RESOURCES, 2021, 21 (05) : 1422 - 1433
  • [10] From environmental DNA sequences to ecological conclusions: How strong is the influence of methodological choices?
    Calderon-Sanou, Irene
    Munkemuller, Tamara
    Boyer, Frederic
    Zinger, Lucie
    Thuiller, Wilfried
    [J]. JOURNAL OF BIOGEOGRAPHY, 2020, 47 (01) : 193 - 206