A message recovery attack on multivariate polynomial trapdoor function

被引:2
作者
Ali, Rashid [1 ]
Hussain, Muhammad Mubashar [2 ]
Kanwal, Shamsa [3 ]
Hajjej, Fahima [4 ]
Inam, Saba [3 ]
机构
[1] Capital Univ Sci & Technol, Dept Math, Islamabad, Pakistan
[2] Univ Punjab, Dept Math, Jhelum, Pakistan
[3] Fatima Jinnah Women Univ, Dept Math Sci, Rawalpindi, Pakistan
[4] Princess Nourah bint Abdulrahman Univ, Coll Comp & Informat Sci, Dept Informat Syst, Riyadh, Saudi Arabia
关键词
Multivariate polynomial system; Grobner basis; Algebraic cryptanalysis; Public key cryptosystem; CRYPTANALYSIS; ALGORITHMS; SYSTEMS; HFE;
D O I
10.7717/peerj-cs.1521
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Cybersecurity guarantees the exchange of information through a public channel in a secure way. That is the data must be protected from unauthorized parties and transmitted to the intended parties with confidentiality and integrity. In this work, we mount an attack on a cryptosystem based on multivariate polynomial trapdoor function over the field of rational numbers Q. The developers claim that the security of their proposed scheme depends on the fact that a polynomial system consisting of 2n (where n is a natural number) equations and 3n unknowns constructed by using quasigroup string transformations, has infinitely many solutions and finding exact solution is not possible. We explain that the proposed trapdoor function is vulnerable to a Grobner basis attack. Selected polynomials in the corresponding Grobner basis can be used to recover the plaintext against a given ciphertext without the knowledge of the secret key.
引用
收藏
页数:17
相关论文
共 26 条
[1]  
ApCoCoA Team, 2023, ApCoCoA: Applied Computations in Commutative Algebra
[2]   On the complexity of the F5 Grobner basis algorithm [J].
Bardet, Magali ;
Faugere, Jean-Charles ;
Salvy, Bruno .
JOURNAL OF SYMBOLIC COMPUTATION, 2015, 70 :49-70
[3]  
Buchberger B, 2001, LECT NOTES COMPUT SC, V2178, P1
[4]  
Buchberger B., 1965, Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem Nulldimensionalen Polynomideal
[5]  
Buchberger Bruno, 1976, SIGSAM Bull., V10, P19, DOI [10.1145/1088216.1088219.487, DOI 10.1145/1088216.1088219.487, 10.1145/1088216.1088219, DOI 10.1145/1088216.1088219]
[6]  
Buchberger Bruno, 1998, Grobner Bases and Applications, V251
[7]  
Courtois N, 2000, LECT NOTES COMPUT SC, V1807, P392
[8]  
Courtois NT, 2001, LECT NOTES COMPUT SC, V2020, P266
[9]  
Cox D, 1998, Using Algebraic Geometry
[10]  
Ding JT, 2009, Multivariate public key cryptography