Fixed Points and λ-Weak Contractions

被引:0
作者
Manolescu, Laura [1 ]
Juratoni, Adina [1 ]
机构
[1] Politehn Univ Timisoara, Dept Math, Piata Victoriei 2, Timisoara 300006, Romania
来源
SYMMETRY-BASEL | 2023年 / 15卷 / 07期
关键词
fixed point; weak contraction; Picard operator;
D O I
10.3390/sym15071442
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we introduce a new type of contractions on a metric space (X,d) in which the distance d(x,y) is replaced with a function, depending on a parameter ?, that is not symmetric in general. This function generalizes the usual case when ?=1/2 and can take bigger values than m1/2. We call these new types of contractions ?-weak contractions and we provide some of their properties. Moreover, we investigate cases when these contractions are Picard operators.
引用
收藏
页数:11
相关论文
共 50 条
[21]   FIXED POINTS AND CONTINUITY OF ALMOST CONTRACTIONS [J].
Berinde, Vasile ;
Pacurar, Madalina .
FIXED POINT THEORY, 2008, 9 (01) :23-34
[22]   Common fixed points of ordered g-quasicontractions and weak contractions in ordered metric spaces [J].
Golubovic, Zoran ;
Kadelburg, Zoran ;
Radenovic, Stojan .
FIXED POINT THEORY AND APPLICATIONS, 2012,
[23]   Common fixed points of ordered g-quasicontractions and weak contractions in ordered metric spaces [J].
Zoran Golubović ;
Zoran Kadelburg ;
Stojan Radenović .
Fixed Point Theory and Applications, 2012
[24]   Coupled fixed points theorems for generalized weak contractions in ordered b-metric spaces [J].
Kalyani, Karusala ;
Rao, Namana Seshagiri ;
Mishra, Lakshmi Narayan .
ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2022, 15 (03)
[25]   Existence and Approximation of Fixed Points of Enriched Contractions and Enriched φ-Contractions [J].
Berinde, Vasile ;
Pacurar, Madalina .
SYMMETRY-BASEL, 2021, 13 (03)
[26]   SOME RANDOM FIXED POINT THEOREMS FOR (θ, L)-WEAK CONTRACTIONS [J].
Saha, Mantu ;
Dey, Debashis .
HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2012, 41 (06) :795-812
[27]   Projective contractions, generalized metrics, and fixed points [J].
Alghamdi, Maryam A. ;
Shahzad, Naseer ;
Valero, Oscar .
FIXED POINT THEORY AND APPLICATIONS, 2015,
[28]   A Fixed Point Theorem for Generalized Weak Contractions [J].
Singh, Shyam Lal ;
Kamal, Raj ;
De la Sen, M. ;
Chugh, Renu .
FILOMAT, 2015, 29 (07) :1481-1490
[29]   APPROXIMATING FIXED POINTS OF IMPLICIT ALMOST CONTRACTIONS [J].
Berinde, Vasile .
HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2012, 41 (01) :93-102
[30]   On the equivalence of certain statements on fixed points of contractions [J].
Semenov, P. V. .
FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2017, 51 (04) :318-321