Bound state positive solutions for a Hartree system with nonlinear couplings

被引:2
作者
Che, Guofeng [1 ]
Su, Yu [2 ]
Wu, Tsung-fang [3 ]
机构
[1] Guangdong Univ Technol, Sch Math & Stat, Guangzhou, Peoples R China
[2] Anhui Univ Sci & Technol, Sch Math & Big Data, Huainan, Peoples R China
[3] Natl Univ Kaohsiung, Dept Appl Math, Kaohsiung, Taiwan
基金
中国国家自然科学基金;
关键词
Hartree system; positive solutions; Nehari manifold; Lusternik-Schnirelmann theory; variational methods; CONCENTRATION-COMPACTNESS PRINCIPLE; SCHRODINGER-EQUATIONS; PULSE-PROPAGATION; STANDING WAVES; SOLITARY WAVES; EXISTENCE; MULTIPLICITY; CALCULUS; SPIKES;
D O I
10.1080/00036811.2023.2236641
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we are interested in the following Hartree system with nonlinear couplings: ............................................... - e2 u + V1 (x) u = 1 eN- mu .1 RN |u|p |x - y| mu dy |u|p-2u + ss RN |v|q |x - y| mu dy |u|q-2u, - e2 v + V2 (x) v = 1 eN- mu .2 RN |v|p |x - y|mu dy |v|p-2v + ss RN |u|q |x - y| mu dy |v|q-2v, u, v. H1(RN), u, v > 0 in RN, where N= 3, 0< mu< N, 2N- mu N = p= 2N- mu N-2, 2N- mu N = q = min{p, 2},.1,.2 > 0, e is a small parameter and ss < 0 is a coupling constant, and the potentials V1 and V2 have k1 and k2 isolated global minimum points, respectively. Using the Nehari manifold technique, the energy estimate method and the Lusternik-Schnirelmann theory, we find an interesting phenomenon that the problem possesses k1k2 positive solutions when V1 and V2 do not have any common isolated global minimum points, and k1k2 + m positive solutions when V1 and V2 have m common isolated global minimum points. Furthermore, the existence and nonexistence of the least energy positive solutions are also explored.
引用
收藏
页码:1176 / 1214
页数:39
相关论文
共 42 条
[1]  
Adachi S, 2000, CALC VAR PARTIAL DIF, V11, P63, DOI 10.1007/s005260050003
[2]   Singularly perturbed critical Choquard equations [J].
Alves, Claudianor O. ;
Gao, Fashun ;
Squassina, Marco ;
Yang, Minbo .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (07) :3943-3988
[3]   Standing waves of some coupled nonlinear Schrodinger equations [J].
Ambrosetti, Antonio ;
Colorado, Eduardo .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2007, 75 :67-82
[4]   OBSERVATION OF BOSE-EINSTEIN CONDENSATION IN A DILUTE ATOMIC VAPOR [J].
ANDERSON, MH ;
ENSHER, JR ;
MATTHEWS, MR ;
WIEMAN, CE ;
CORNELL, EA .
SCIENCE, 1995, 269 (5221) :198-201
[5]  
[Anonymous], 1992, Mem. Soc. Math. Fr. (N.S.)
[6]   Bound states for a coupled Schrodinger system [J].
Bartsch, Thomas ;
Wang, Zhi-Qiang ;
Wei, Juncheng .
JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2007, 2 (02) :353-367
[7]   Normalized solutions for a coupled Schrodinger system [J].
Bartsch, Thomas ;
Zhong, Xuexiu ;
Zou, Wenming .
MATHEMATISCHE ANNALEN, 2021, 380 (3-4) :1713-1740
[8]   A natural constraint approach to normalized solutions of nonlinear Schrodinger equations and systems [J].
Bartsch, Thomas ;
Soave, Nicola .
JOURNAL OF FUNCTIONAL ANALYSIS, 2017, 272 (12) :4998-5037
[9]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
[10]   A RELATION BETWEEN POINTWISE CONVERGENCE OF FUNCTIONS AND CONVERGENCE OF FUNCTIONALS [J].
BREZIS, H ;
LIEB, E .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 88 (03) :486-490