Characterization and digital aberration correction of a hyperspectral imaging system for plant disease detection

被引:1
|
作者
Zabic, Miroslav [1 ,2 ]
Jose, Lijin [1 ]
Landes, Timm [1 ,2 ,3 ]
Fritz, Jan-Michael [1 ,2 ]
Weisheit, Inga [1 ,2 ]
Heinemann, Dag [1 ,2 ,3 ]
机构
[1] Leibniz Univ Hannover, Hannover Ctr Opt Technol HOT, Nienburger Str 17, D-30167 Hannover, Germany
[2] Leibniz Univ Hannover, Inst Hort Prod Syst, Herrenhauser Str 2, D-30419 Hannover, Germany
[3] Leibniz Univ Hannover, PhoenixD Cluster Excellence, Welfengarten 1A, D-30167 Hannover, Germany
来源
关键词
hyperspectral imaging; spatial resolution; deconvolution; plant disease detection; agriculture;
D O I
10.1117/12.2647833
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Hyperspectral imaging is a key technology for monitoring agricultural crops and vegetation. It can be used for health estimation and the early detection of disease symptoms in plants. This can help to reduce the use of pesticides by allowing targeted and early intervention. Cost-efficient hyperspectral imaging systems are necessary to meet the increasing demand for monitoring techniques for agricultural products. These systems usually suffer from sub-optimal image quality. Here we present a digital aberration correction for hyperspectral image data.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] Application of Hyperspectral Imaging as a Nondestructive Technique for Foodborne Pathogen Detection and Characterization
    Bonah, Ernest
    Huang, Xingyi
    Aheto, Joshua Harrington
    Osae, Richard
    FOODBORNE PATHOGENS AND DISEASE, 2019, 16 (10) : 712 - 722
  • [42] DETECTION OF DISEASE SYMPTOMS ON HYPERSPECTRAL 3D PLANT MODELS
    Roscher, Ribana
    Behmann, Jan
    Mahlein, Anne-Katrin
    Dupuis, Jan
    Kuhlmann, Heiner
    Pluemer, Lutz
    XXIII ISPRS CONGRESS, COMMISSION VII, 2016, 3 (07): : 89 - 96
  • [43] A review of hyperspectral image analysis techniques for plant disease detection and identification
    Chelhkova, A. F.
    VAVILOVSKII ZHURNAL GENETIKI I SELEKTSII, 2022, 26 (02): : 202 - 213
  • [44] Evaluation of the benefits of combined reflection and transmission hyperspectral imaging data through disease detection and quantification in plant–pathogen interactions
    Stefan Thomas
    Jan Behmann
    Uwe Rascher
    Anne-Katrin Mahlein
    Journal of Plant Diseases and Protection, 2022, 129 : 505 - 520
  • [45] Light consistency correction for the liquid crystal tunable filter hyperspectral imaging system
    Zhang, Jianxin
    Zhang, Yupeng
    Qian, Miao
    Zhang, Xinen
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2024, 41 (06) : 1089 - 1097
  • [46] Digital aberration correction for enhanced thick tissue imaging exploiting aberration matrix and tilt-tilt correlation from the optical memory effect
    Oh, Chulmin
    Hugonnet, Herve
    Lee, Moosung
    Park, Yongkeun
    NATURE COMMUNICATIONS, 2025, 16 (01)
  • [47] DIGITAL DEVICE FOR GENERATING PARABOLIC VOLTAGES FOR AN ELECTRON-BEAM TUBE ABERRATION CORRECTION SYSTEM
    KULYAS, OL
    KAMALYAGIN, AA
    INSTRUMENTS AND EXPERIMENTAL TECHNIQUES, 1982, 25 (02) : 352 - 354
  • [48] Hyperspectral stimulated Raman scattering and multiphoton imaging for digital pathology of colonic disease
    Zi, Wang
    Wei, Zheng
    Lin, Jian
    Huang Zhiwei
    MULTIPHOTON MICROSCOPY IN THE BIOMEDICAL SCIENCES XVI, 2016, 9712
  • [49] Hyperspectral Imaging Combined With Deep Transfer Learning for Rice Disease Detection
    Feng, Lei
    Wu, Baohua
    He, Yong
    Zhang, Chu
    FRONTIERS IN PLANT SCIENCE, 2021, 12
  • [50] Progress toward an extremely compact hyperspectral imaging system for environmental characterization
    Yetzbacher, Michael K.
    Montes, Marcos J.
    Christophersen, Marc
    Edelberg, Jason A.
    Czarnaski, Joseph P.
    DePrenger, Michael J.
    Frawley, Steven J.
    Schlupf, Joseph A.
    IMAGING SPECTROMETRY XXIII: APPLICATIONS, SENSORS, AND PROCESSING, 2019, 11130