Characterization and digital aberration correction of a hyperspectral imaging system for plant disease detection

被引:1
|
作者
Zabic, Miroslav [1 ,2 ]
Jose, Lijin [1 ]
Landes, Timm [1 ,2 ,3 ]
Fritz, Jan-Michael [1 ,2 ]
Weisheit, Inga [1 ,2 ]
Heinemann, Dag [1 ,2 ,3 ]
机构
[1] Leibniz Univ Hannover, Hannover Ctr Opt Technol HOT, Nienburger Str 17, D-30167 Hannover, Germany
[2] Leibniz Univ Hannover, Inst Hort Prod Syst, Herrenhauser Str 2, D-30419 Hannover, Germany
[3] Leibniz Univ Hannover, PhoenixD Cluster Excellence, Welfengarten 1A, D-30167 Hannover, Germany
来源
关键词
hyperspectral imaging; spatial resolution; deconvolution; plant disease detection; agriculture;
D O I
10.1117/12.2647833
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Hyperspectral imaging is a key technology for monitoring agricultural crops and vegetation. It can be used for health estimation and the early detection of disease symptoms in plants. This can help to reduce the use of pesticides by allowing targeted and early intervention. Cost-efficient hyperspectral imaging systems are necessary to meet the increasing demand for monitoring techniques for agricultural products. These systems usually suffer from sub-optimal image quality. Here we present a digital aberration correction for hyperspectral image data.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Plant Disease Detection using Hyperspectral Imaging
    Moghadam, Peyman
    Ward, Daniel
    Goan, Ethan
    Jayawardena, Srimal
    Sikka, Pavan
    Hernandez, Emili
    2017 INTERNATIONAL CONFERENCE ON DIGITAL IMAGE COMPUTING - TECHNIQUES AND APPLICATIONS (DICTA), 2017, : 384 - 391
  • [2] A Review on Plant Disease Detection Using Hyperspectral Imaging
    Rayhana, Rakiba
    Ma, Zhenyu
    Liu, Zheng
    Xiao, Gaozhi
    Ruan, Yuefeng
    Sangha, Jatinder S.
    IEEE Transactions on AgriFood Electronics, 2023, 1 (02): : 108 - 134
  • [3] Benefits of hyperspectral imaging for plant disease detection and plant protection: a technical perspective
    Stefan Thomas
    Matheus Thomas Kuska
    David Bohnenkamp
    Anna Brugger
    Elias Alisaac
    Mirwaes Wahabzada
    Jan Behmann
    Anne-Katrin Mahlein
    Journal of Plant Diseases and Protection, 2018, 125 : 5 - 20
  • [4] Benefits of hyperspectral imaging for plant disease detection and plant protection: a technical perspective
    Thomas, Stefan
    Kuska, Matheus Thomas
    Bohnenkamp, David
    Brugger, Anna
    Alisaac, Elias
    Wahabzada, Mirwaes
    Behmann, Jan
    Mahlein, Anne-Katrin
    JOURNAL OF PLANT DISEASES AND PROTECTION, 2018, 125 (01) : 5 - 20
  • [5] Digital aberration correction for in-vivo retinal OCT imaging
    Leitgeb, Rainer A.
    Ginner, Laurin
    Kumar, Abhishek
    Fechtig, Daniel
    2016 15TH WORKSHOP ON INFORMATION OPTICS (WIO), 2016,
  • [6] Early Detection of Plant Viral Disease Using Hyperspectral Imaging and Deep Learning
    Nguyen, Canh
    Sagan, Vasit
    Maimaitiyiming, Matthew
    Maimaitijiang, Maitiniyazi
    Bhadra, Sourav
    Kwasniewski, Misha T.
    SENSORS, 2021, 21 (03) : 1 - 23
  • [7] Plant Disease Severity Estimated Visually, by Digital Photography and Image Analysis, and by Hyperspectral Imaging
    Bock, C. H.
    Poole, G. H.
    Parker, P. E.
    Gottwald, T. R.
    CRITICAL REVIEWS IN PLANT SCIENCES, 2010, 29 (02) : 59 - 107
  • [8] Computational aberration correction for an arbitrary linear imaging system
    Allen, LJ
    Oxley, MP
    Paganin, D
    PHYSICAL REVIEW LETTERS, 2001, 87 (12) : 1 - 123902
  • [9] Aberration correction method for the catadioptric imaging system design
    Liu, Zhenjie
    Yu, Feihong
    APPLIED OPTICS, 2016, 55 (11) : 2943 - 2950
  • [10] Illumination system characterization for hyperspectral imaging
    Katrasnik, Jaka
    Pernus, Franjo
    Likar, Bostjan
    DESIGN AND QUALITY FOR BIOMEDICAL TECHNOLOGIES IV, 2011, 7891