A novel artificial intelligence-based predictive analytics technique to detect skin cancer

被引:4
作者
Balaji, Prasanalakshmi [1 ]
Hung, Bui Thanh [1 ]
Chakrabarti, Prasun [2 ]
Chakrabarti, Tulika [3 ]
Elngar, Ahmed A. [4 ]
Aluvalu, Rajanikanth [5 ]
机构
[1] Ind Univ Ho Chi Minh City, Fac Informat Technol, Data Sci Lab, Ho Chi Minh City, Vietnam
[2] ITM SLS Baroda Univ, Vadodara, Gujarat, India
[3] Sir Padamapat Singhania Univ, Udaipur, Rajasthan, India
[4] Beni Suef Univ, Fac Comp & Artificial Intelligence, Bani Suwayf, Egypt
[5] Chaitanya Bharathi Inst Technol, Dept IT, Hyderabad, India
关键词
Skin cancer; Artificial intelligence; Malignant tumors; Deep learning; Machine learning; HEALTH;
D O I
10.7717/peerj-cs.1387
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
One of the leading causes of death among people around the world is skin cancer. It is critical to identify and classify skin cancer early to assist patients in taking the right course of action. Additionally, melanoma, one of the main skin cancer illnesses, is curable when detected and treated at an early stage. More than 75% of fatalities worldwide are related to skin cancer. A novel Artificial Golden Eagle-based Random Forest (AGEbRF) is created in this study to predict skin cancer cells at an early stage. Dermoscopic images are used in this instance as the dataset for the system's training. Additionally, the dermoscopic image information is processed using the established AGEbRF function to identify and segment the skin cancer-affected area. Additionally, this approach is simulated using a Python program, and the current research's parameters are assessed against those of earlier studies. The results demonstrate that, compared to other models, the new research model produces better accuracy for predicting skin cancer by segmentation.
引用
收藏
页数:20
相关论文
共 30 条
[1]  
Alagu S., 2021, AIP Conference Proceedings, V2336, DOI 10.1063/5.0045757
[2]   A State-of-the-Art Survey on Deep Learning Theory and Architectures [J].
Alom, Md Zahangir ;
Taha, Tarek M. ;
Yakopcic, Chris ;
Westberg, Stefan ;
Sidike, Paheding ;
Nasrin, Mst Shamima ;
Hasan, Mahmudul ;
Van Essen, Brian C. ;
Awwal, Abdul A. S. ;
Asari, Vijayan K. .
ELECTRONICS, 2019, 8 (03)
[3]   Effective Synergy of Sorafenib and Nutrient Shortage in Inducing Melanoma Cell Death through Energy Stress [J].
Antunes, Fernanda ;
Pereira, Gustavo J. S. ;
Saito, Renata F. ;
Buri, Marcus, V ;
Gagliardi, Mara ;
Bincoletto, Claudia ;
Chammas, Roger ;
Fimia, Gian Maria ;
Piacentini, Mauro ;
Corazzari, Marco ;
Smaili, Soraya Soubhi .
CELLS, 2020, 9 (03)
[4]   Transcription of human papillomaviruses in nonmelanoma skin cancers of the immunosuppressed [J].
Arroyo Muhr, Laila Sara ;
Hultin, Emilie ;
Dillner, Joakim .
INTERNATIONAL JOURNAL OF CANCER, 2021, 149 (06) :1341-1347
[5]  
Bilbao Imanol, 2017, 2017 Eighth International Conference on Intelligent Computing and Information Systems (ICICIS). Proceedings, P173, DOI 10.1109/INTELCIS.2017.8260032
[6]   Reinforcement Learning, Fast and Slow [J].
Botvinick, Matthew ;
Ritter, Sam ;
Wang, Jane X. ;
Kurth-Nelson, Zeb ;
Blundell, Charles ;
Hassabis, Demis .
TRENDS IN COGNITIVE SCIENCES, 2019, 23 (05) :408-422
[7]   The evolution and ecology of benign tumors [J].
Boutry, Justine ;
Tissot, Sophie ;
Ujvari, Beata ;
Capp, Jean-Pascal ;
Giraudeau, Mathieu ;
Nedelcu, Aurora M. ;
Thomas, Frederic .
BIOCHIMICA ET BIOPHYSICA ACTA-REVIEWS ON CANCER, 2022, 1877 (01)
[8]   Self-supervised learning for medical image analysis using image context restoration [J].
Chen, Liang ;
Bentley, Paul ;
Mori, Kensaku ;
Misawa, Kazunari ;
Fujiwara, Michitaka ;
Rueckert, Daniel .
MEDICAL IMAGE ANALYSIS, 2019, 58
[9]  
Codella N, 2019, Arxiv, DOI arXiv:1902.03368
[10]   Risk of squamous cell carcinoma of the lip and cutaneous melanoma in older Australians using hydrochlorothiazide: A population-based case-control study [J].
Daniels, Benjamin ;
Pearson, Sallie-Anne ;
Vajdic, Claire M. ;
Pottegard, Anton ;
Buckley, Nicholas A. ;
Zoega, Helga .
BASIC & CLINICAL PHARMACOLOGY & TOXICOLOGY, 2020, 127 (04) :320-328