A rational design of highly active and coke-resistant anode for methanol-fueled solid oxide fuel cells with Sn doped Ni-Ce0.8Sm0.2O2_?

被引:9
作者
Gan, Tian [1 ,2 ,3 ]
Song, Hexuan [2 ,3 ]
Fan, Xinqiang [2 ,3 ]
Liu, Ye [2 ,3 ]
Liu, Shouqing [1 ]
Zhao, Yicheng [2 ,3 ]
Li, Yongdan [2 ,3 ,4 ]
机构
[1] Suzhou Univ Sci & Technol, Sch Chem & Life Sci, Suzhou 215009, Peoples R China
[2] Tianjin Univ, Sch Chem Engn & Technol, State Key Lab Chem Engn, Tianjin Key Lab Appl Catalysis Sci & Technol, Tianjin 300072, Peoples R China
[3] Collaborat Innovat Ctr Chem Sci & Engn Tianjin, Tianjin 300072, Peoples R China
[4] Aalto Univ, Sch Chem Engn, Dept Chem & Met Engn, Kemistintie 1,Espoo,POB 16100, FI-00076 Aalto, Finland
关键词
Ni-Sn intermetallic compounds; Doped ceria; Methanol fuel; Anode; Solid oxide fuel cell; CARBON DEPOSITION; CATALYSTS; NANOPARTICLES; REDUCTION; STABILITY;
D O I
10.1016/j.cej.2022.140692
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A crucial challenge in the commercialization of Ni-based materials as the anode of solid oxide fuel cell is the fast voltage drop due to carbon deposition and structural degradation during cell operation. Herein, Sn-doped Ce0.8Sm0.2O2_delta (SDC) supported Sn-Ni alloy anode is rationally designed and prepared, via a simple and convenient dual-modification strategy. The substitution of Sn of Ce in the oxide phase enhances the mobility of lattice oxygen in SDC. Meanwhile, Sn exsolves partially from the oxide phase and forms Ni3Sn and Ni3Sn2 intermetallic compounds with Ni after reduction. The composite anode thus formed achieves unprecedent ac-tivity in the electrochemical oxidation of H2 and CH3OH. The maximum power densities of a cell supported by 500 mu m-thick Ce0.8Sm0.2O2_delta-carbonate electrolyte layer with the Ni-Ce0.7Sn0.1Sm0.2O2_delta (Ni-SSn10DC) anode reach 1.99 and 2.11 W cm_2 at 700 degrees C, respectively for using H2 and methanol as fuels. The doping of Sn also remarkably enhances the coking resistance of the anode. This work opens a path on the design of high-performance SOFC anode.
引用
收藏
页数:8
相关论文
共 46 条
[1]   Work function measurements of contact materials for industrial use [J].
Akbi, M ;
Lefort, A .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1998, 31 (11) :1301-1308
[2]   Synthesis and characterization of low amount tin-doped ceria (CexSn1-xO2-δ) for catalytic CO oxidation [J].
Ayastuy, J. L. ;
Iglesias-Gonzalez, A. ;
Gutierrez-Ortiz, M. A. .
CHEMICAL ENGINEERING JOURNAL, 2014, 244 :372-381
[3]   Cationic Surface Reconstructions on Cerium Oxide Nanocrystals: An Aberration-Corrected HRTEM Study [J].
Bhatta, Umananda M. ;
Ross, Ian M. ;
Sayle, Thi X. T. ;
Sayle, Dean C. ;
Parker, Stephen C. ;
Reid, David ;
Seal, Sudipta ;
Kumar, Amit ;
Moebus, Guenter .
ACS NANO, 2012, 6 (01) :421-430
[4]   Raman spectroscopic monitoring of carbon deposition on hydrocarbon-fed solid oxide fuel cell anodes [J].
Blinn, Kevin S. ;
Abernathy, Harry ;
Li, Xiaxi ;
Liu, Mingfei ;
Bottomley, Lawrence A. ;
Liu, Meilin .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (07) :7913-7917
[5]   Size-Tunable Ni Nanoparticles Supported on Surface-Modified, Cage-Type Mesoporous Silica as Highly Active Catalysts for CO2 Hydrogenation [J].
Chen, Ching-Shiun ;
Budi, Canggih Setya ;
Wu, Hung-Chi ;
Saikia, Diganta ;
Kao, Hsien-Ming .
ACS CATALYSIS, 2017, 7 (12) :8367-8381
[6]   A robust fuel cell operated on nearly dry methane at 500 °C enabled by synergistic thermal catalysis and electrocatalysis [J].
Chen, Yu ;
deGlee, Ben ;
Tang, Yu ;
Wang, Ziyun ;
Zhao, Bote ;
Wei, Yuechang ;
Zhang, Lei ;
Yoo, Seonyoung ;
Pei, Kai ;
Kim, Jun Hyuk ;
Ding, Yong ;
Hu, P. ;
Tao, Franklin Feng ;
Liu, Meilin .
NATURE ENERGY, 2018, 3 (12) :1042-1050
[7]  
Chueh WC, 2012, NAT MATER, V11, P155, DOI [10.1038/NMAT3184, 10.1038/nmat3184]
[8]   Carbon-resistant Ni1-xCox-Ce0.8Sm0.2O1.9 anode for solid oxide fuel cells fed with methanol [J].
Ding, Guochang ;
Gan, Tian ;
Yu, Ji ;
Li, Ping ;
Yao, Xueli ;
Hou, Nianjun ;
Fan, Lijun ;
Zhao, Yicheng ;
Li, Yongdan .
CATALYSIS TODAY, 2017, 298 :250-257
[9]   High-Performance Anode Material Sr2FeMo0.65Ni0.35O6-δ with In Situ Exsolved Nanoparticle Catalyst [J].
Du, Zhihong ;
Zhao, Hailei ;
Yi, Sha ;
Xia, Qing ;
Gong, Yue ;
Zhang, Yang ;
Cheng, Xing ;
Li, Yan ;
Gu, Lin ;
Swierczek, Konrad .
ACS NANO, 2016, 10 (09) :8660-8669
[10]   Nanomaterials and technologies for low temperature solid oxide fuel cells: Recent advances, challenges and opportunities [J].
Fan, Liangdong ;
Zhu, Bin ;
Su, Pei-Chen ;
He, Chuanxin .
NANO ENERGY, 2018, 45 :148-176