Putting High-Index Cu on the Map for High- Yield, Dry-Transferred CVD Graphene

被引:15
作者
Burton, Oliver J. [1 ]
Winter, Zachary [2 ]
Watanabe, Kenji [3 ]
Taniguchi, Takashi [4 ]
Beschoten, Bernd [2 ]
Stampfer, Christoph [2 ,5 ]
Hofmann, Stephan [1 ]
机构
[1] Univ Cambridge, Dept Engn, Cambridge CB3 0FA, England
[2] Rhein Westfal TH Aachen, Inst Phys A & JARA FIT 2, D-52074 Aachen, Germany
[3] Natl Inst Mat Sci, Res Ctr Funct Mat, Tsukuba, Ibaraki 3050044, Japan
[4] Natl Inst Mat Sci, Int Ctr Mat Nanoarchitecton, Tsukuba, Ibaraki 3050044, Japan
[5] ForschungszentrumJulich, Peter Grunberg Inst PGI 9, D-52425 Julich, Germany
基金
英国工程与自然科学研究理事会; 欧洲研究理事会;
关键词
CVD; graphene; single crystal; dry transfer; data science; 2D material; high electron mobility; CHEMICAL-VAPOR-DEPOSITION; RAMAN-SPECTROSCOPY; EPITAXIAL-GROWTH; COPPER; OXIDATION; SUBSTRATE; OXYGEN;
D O I
10.1021/acsnano.2c09253
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Reliable, clean transfer and interfacing of 2D material layers are technologically as important as their growth. Bringing both together remains a challenge due to the vast, interconnected parameter space. We introduce a fast-screening descriptor approach to demonstrate holistic data-driven opti-mization across the entirety of process steps for the graphene-Cu model system. We map the crystallographic dependences of graphene chemical vapor deposition, interfacial Cu oxidation to decouple graphene, and its dry delamination across inverse pole figures. Their overlay enables us to identify hitherto unexplored (168) higher index Cu orientations as overall optimal orientations. We show the effective preparation of such Cu orientations via epitaxial close-space sublimation and achieve mechanical transfer with a very high yield (>95%) and quality of graphene domains, with room-temperature electron mobilities in the range of 40000 cm2/(V s). Our approach is readily adaptable to other descriptors and 2D material systems, and we discuss the opportunities of such a holistic optimization.
引用
收藏
页码:1229 / 1238
页数:10
相关论文
共 53 条
[1]   Graphene and two-dimensional materials for silicon technology [J].
Akinwande, Deji ;
Huyghebaert, Cedric ;
Wang, Ching-Hua ;
Serna, Martha I. ;
Goossens, Stijn ;
Li, Lain-Jong ;
Wong, H. -S. Philip ;
Koppens, Frank H. L. .
NATURE, 2019, 573 (7775) :507-518
[2]   Oxidation Mechanisms of Copper under Graphene: The Role of Oxygen Encapsulation [J].
Alvarez-Fraga, Leo ;
Rubio-Zuazo, Juan ;
Jimenez-Villacorta, Felix ;
Climent-Pascual, Esteban ;
Ramirez-Jimenez, Rafael ;
Prieto, Carlos ;
de Andres, Alicia .
CHEMISTRY OF MATERIALS, 2017, 29 (07) :3257-3264
[3]   Production and processing of graphene and related materials [J].
Backes, Claudia ;
Abdelkader, Amr M. ;
Alonso, Concepcion ;
Andrieux-Ledier, Amandine ;
Arenal, Raul ;
Azpeitia, Jon ;
Balakrishnan, Nilanthy ;
Banszerus, Luca ;
Barjon, Julien ;
Bartali, Ruben ;
Bellani, Sebastiano ;
Berger, Claire ;
Berger, Reinhard ;
Ortega, M. M. Bernal ;
Bernard, Carlo ;
Beton, Peter H. ;
Beyer, Andre ;
Bianco, Alberto ;
Boggild, Peter ;
Bonaccorso, Francesco ;
Barin, Gabriela Borin ;
Botas, Cristina ;
Bueno, Rebeca A. ;
Carriazo, Daniel ;
Castellanos-Gomez, Andres ;
Christian, Meganne ;
Ciesielski, Artur ;
Ciuk, Tymoteusz ;
Cole, Matthew T. ;
Coleman, Jonathan ;
Coletti, Camilla ;
Crema, Luigi ;
Cun, Huanyao ;
Dasler, Daniela ;
De Fazio, Domenico ;
Diez, Noel ;
Drieschner, Simon ;
Duesberg, Georg S. ;
Fasel, Roman ;
Feng, Xinliang ;
Fina, Alberto ;
Forti, Stiven ;
Galiotis, Costas ;
Garberoglio, Giovanni ;
Garcia, Jorge M. ;
Antonio Garrido, Jose ;
Gibertini, Marco ;
Goelzhaeuser, Armin ;
Gomez, Julio ;
Greber, Thomas .
2D MATERIALS, 2020, 7 (02)
[4]   Identifying suitable substrates for high-quality graphene-based heterostructures [J].
Banszerus, L. ;
Janssen, H. ;
Otto, M. ;
Epping, A. ;
Taniguchi, T. ;
Watanabe, K. ;
Beschoten, B. ;
Neumaier, D. ;
Stampfer, C. .
2D MATERIALS, 2017, 4 (02)
[5]   Ultrahigh-mobility graphene devices from chemical vapor deposition on reusable copper [J].
Banszerus, Luca ;
Schmitz, Michael ;
Engels, Stephan ;
Dauber, Jan ;
Oellers, Martin ;
Haupt, Federica ;
Watanabe, Kenji ;
Taniguchi, Takashi ;
Beschoten, Bernd ;
Stampfer, Christoph .
SCIENCE ADVANCES, 2015, 1 (06)
[6]   Intrinsic Line Shape of the Raman 2D-Mode in Freestanding Graphene Monolayers [J].
Berciaud, Stephane ;
Li, Xianglong ;
Htoon, Han ;
Brus, Louis E. ;
Doorn, Stephen K. ;
Heinz, Tony F. .
NANO LETTERS, 2013, 13 (08) :3517-3523
[7]   Crystal Orientation Dependent Oxidation Modes at the Buried Graphene-Cu Interface [J].
Braeuninger-Weimer, Philipp ;
Burton, Oliver J. ;
Zeller, Patrick ;
Amati, Matteo ;
Gregoratti, Luca ;
Weatherup, Robert S. ;
Hofmann, Stephan .
CHEMISTRY OF MATERIALS, 2020, 32 (18) :7766-7776
[8]   Polycrystalline Graphene with Single Crystalline Electronic Structure [J].
Brown, Lola ;
Lochocki, Edward B. ;
Avila, Jose ;
Kim, Cheol-Joo ;
Ogawa, Yui ;
Havener, Robin W. ;
Kim, Dong-Ki ;
Monkman, Eric J. ;
Shai, Daniel E. ;
Wei, Haofei I. ;
Levendorf, Mark P. ;
Asensio, Maria ;
Shen, Kyle M. ;
Park, Jiwoong .
NANO LETTERS, 2014, 14 (10) :5706-5711
[9]   Integrated Wafer Scale Growth of Single Crystal Metal Films and High Quality Graphene [J].
Burton, Oliver J. ;
Massabuau, Fabien C-P. ;
Veigang-Radulescu, Vlad-Petru ;
Brennan, Barry ;
Pollard, Andrew J. ;
Hofmann, Stephan .
ACS NANO, 2020, 14 (10) :13593-13601
[10]   The Role and Control of Residual Bulk Oxygen in the Catalytic Growth of 2D Materials [J].
Burton, Oliver J. ;
Babenko, Vitaliy ;
Veigang-Radulescu, Vlad-Petru ;
Brennan, Barry ;
Pollard, Andrew J. ;
Hofmann, Stephan .
JOURNAL OF PHYSICAL CHEMISTRY C, 2019, 123 (26) :16257-16267