Strong Maximum Principle and Boundary Estimates for Nonhomogeneous Elliptic Equations

被引:2
作者
Lundstroem, Niklas L. P. [1 ]
Olofsson, Marcus [1 ]
Toivanen, Olli [2 ]
机构
[1] Umea Univ, Dept Math & Math Stat, SE-90187 Umea, Sweden
[2] Univ Eastern Finland, Dept Appl Phys, FI-70210 Kuopio, Finland
基金
瑞典研究理事会;
关键词
Osgood condition; Non-Lipschitz drift; Non-standard growth; Variable exponent; Fully nonlinear; Sphere condition; Laplace equation; Hopf Lemma; Boundary Harnack inequality; P-HARMONIC-FUNCTIONS; VISCOSITY SOLUTIONS; HARNACK PRINCIPLE; DIFFERENTIAL-EQUATIONS; POSITIVE SOLUTIONS; MARTIN BOUNDARY; BEHAVIOR; LIPSCHITZ; PROPAGATION; INEQUALITY;
D O I
10.1007/s11118-022-10055-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a simple proof of the strong maximum principle for viscosity subsolutions of fully nonlinear nonhomogeneous degenerate elliptic equations on the form F(x, u, Du, D(2)u) = 0 under suitable assumptions allowing for non-Lipschitz growth in the gradient term. In case of smooth boundaries, we also prove a Hopf lemma, a boundary Harnack inequality, and that positive viscosity solutions vanishing on a portion of the boundary are comparable with the distance function near the boundary. Our results apply, e.g., to weak solutions of an eigenvalue problem for the variable exponent p-Laplacian.
引用
收藏
页码:425 / 443
页数:19
相关论文
共 44 条
[21]   UNIQUENESS OF POSITIVE SOLUTIONS FOR NONLINEAR COOPERATIVE SYSTEMS WITH THE P-LAPLACIAN [J].
FLECKINGERPELLE, J ;
TAKAC, P .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1994, 43 (04) :1227-1253
[22]  
Gilbarg D., 1998, ELLIPTIC PARTIAL DIF, VSecond
[23]   Overview of differential equations with non-standard growth [J].
Harjulehto, Petteri ;
Hasto, Peter ;
Le, Ut V. ;
Nuortio, Matti .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (12) :4551-4574
[24]  
Jarosz O., 2015, CONT MATH 645 FUNCTI
[25]   BOUNDARY-BEHAVIOR OF HARMONIC-FUNCTIONS IN NON-TANGENTIALLY ACCESSIBLE DOMAINS [J].
JERISON, DS ;
KENIG, CE .
ADVANCES IN MATHEMATICS, 1982, 46 (01) :80-147
[26]   Generalized Harnack Inequality for Nonhomogeneous Elliptic Equations [J].
Julin, Vesa .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2015, 216 (02) :673-702
[27]   Equivalence of viscosity and weak solutions for the p(x)-Laplacian [J].
Juutinen, Petri ;
Lukkari, Teemu ;
Parviainen, Mikko .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2010, 27 (06) :1471-1487
[28]   Strong maximum principle for semicontinuous viscosity solutions of nonlinear partial differential equations [J].
Kawohl, B ;
Kutev, N .
ARCHIV DER MATHEMATIK, 1998, 70 (06) :470-478
[30]   Boundary behavior and the Martin boundary problem for p harmonic functions in Lipschitz domains [J].
Lewis, John ;
Nystrom, Kaj .
ANNALS OF MATHEMATICS, 2010, 172 (03) :1907-1948