Long-term nitrogen and phosphorus fertilization reveals that phosphorus limitation shapes the microbial community composition and functions in tropical montane forest soil

被引:52
|
作者
Ma, Xiaomin [1 ]
Zhou, Zhang [2 ]
Chen, Jie [2 ]
Xu, Han [2 ]
Ma, Suhui [3 ]
Dippold, Michaela A. [4 ]
Kuzyakov, Yakov [5 ,6 ]
机构
[1] Zhejiang A&F Univ, State Key Lab Subtrop Silviculture, Hangzhou 311300, Peoples R China
[2] Chinese Acad Forestry, Res Inst Trop Forestry, Guangzhou 510520, Peoples R China
[3] Peking Univ, Key Lab Earth Surface Proc, Coll Urban & Environm Sci, Inst Ecol,Minist Educ, Beijing, Peoples R China
[4] Univ Tubingen, Geobiosphere Interact, Tuebingen Schnarrenberg Str 94-96, D-72076 Tubingen, Germany
[5] Univ Goettingen, Dept Agr Soil Sci, Dept Soil Sci Temperate Ecosyst, D-37077 Gottingen, Germany
[6] Peoples Friendship Univ Russia RUDN Univ, Moscow 117198, Russia
基金
中国国家自然科学基金;
关键词
Nitrogen and phosphorus fertilization; Microbial community composition; Enzyme activity; Functional gene abundance; Nutrient cycling; Tropical montane forest; BIOMASS PHOSPHORUS; ENZYME-ACTIVITIES; ORGANIC-MATTER; AMINO SUGAR; CARBON; DEPOSITION; BACTERIAL; RESPIRATION; ADDITIONS; RESPONSES;
D O I
10.1016/j.scitotenv.2022.158709
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Microorganisms govern soil nutrient cycling. It is therefore critical to understand their responses to human-induced increases in N and P inputs. We investigated microbial community composition, biomass, functional gene abundance, and enzyme activities in response to 10-year N and P addition in a primary tropical montane forest, and we explored the drivers behind these effects. Fungi were more sensitive to nutrient addition than bacteria, and the fungal commu-nity shift was mainly driven by P availability. N addition aggravated P limitation, to which microbes responded by in-creasing the abundance of P cycling functional genes and phosphatase activity. In contrast, P addition alleviated P deficiency, and thus P cycling functional gene abundance and phosphatase activity decreased. The shift of microbial community composition, changes in functional genes involved in P cycling, and phosphatase activity were mainly driven by P addition, which also induced the alteration of soil stoichiometry (C/P and N/P). Eliminating P deficiency through fertilization accelerated C cycling by increasing the activity of C degradation enzymes. The abundances of C and P functional genes were positively correlated, indicating the intensive coupling of C and P cycling in P-limited for-est soil. In summary, a long-term fertilization experiment demonstrated that soil microorganisms could adapt to in-duced environmental changes in soil nutrient stoichiometry, not only through shifts of microbial community composition and functional gene abundances, but also through the regulation of enzyme production. The response of the microbial community to N and P imbalance and effects of the microbial community on soil nutrient cycling should be incorporated into the ecosystem biogeochemical model.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Phosphorus limitation promotes soil carbon storage in a boreal forest exposed to long-term nitrogen fertilization
    Richy, Etienne
    Fort, Tania
    Odriozola, Inaki
    Kohout, Petr
    Barbi, Florian
    Martinovic, Tijana
    Tupek, Boris
    Adamczyk, Bartosz
    Lehtonen, Aleksi
    Makipaa, Raisa
    Baldrian, Petr
    GLOBAL CHANGE BIOLOGY, 2024, 30 (09)
  • [2] Linking microbial nutrient limitation and community composition to nitrogen mineralization in bamboo forest soil with phosphorus addition
    Hu, Tong-Tao
    Bu, Dong
    Zhang, Yang
    Wang, Fang-Chao
    Li, Jian-Jun
    Zu, Kui-Ling
    Meng, Ming-Hui
    Liang, Chao
    Fang, Xiang-Min
    SOIL ECOLOGY LETTERS, 2025, 7 (01)
  • [3] Interaction of soil microbial communities and phosphorus fractions under long-term fertilization in paddy soil
    Qaswar, Muhammad
    Ahmed, Waqas
    HUANG, Jing
    LIU, Kai-lou
    ZHANG, Lu
    HAN, Tian-fu
    DU, Jiang-xue
    Ali, Sehrish
    Ur-Rahim, Hafeez
    HUANG, Qing-hai
    ZHANG, Hui-min
    JOURNAL OF INTEGRATIVE AGRICULTURE, 2022, 21 (07) : 2134 - 2144
  • [4] Biochar amendment reassembles microbial community in a long-term phosphorus fertilization paddy soil
    Zhou, Tongtong
    Tang, Sijia
    Cui, Jie
    Zhang, Yukai
    Li, Xin
    Qiao, Qicheng
    Long, Xi-En
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2023, 107 (19) : 6013 - 6028
  • [5] Long-term phosphorus fertilization reveals the phosphorus limitation shaping the soil micro-food web stability in the Loess Plateau
    Li, Liangliang
    Luo, Zhuzhu
    Li, Lingling
    Niu, Yining
    Zhang, Yaoquan
    He, Renyuan
    Liu, Jiahe
    Nian, Lili
    FRONTIERS IN MICROBIOLOGY, 2024, 14
  • [6] Effects of nitrogen and phosphorus addition on soil microbial community in a secondary tropical forest of China
    Li, Jian
    Li, Zhian
    Wang, Faming
    Zou, Bi
    Chen, Yao
    Zhao, Jie
    Mo, Qifeng
    Li, Yingwen
    Li, Xiaobo
    Xia, Hanping
    BIOLOGY AND FERTILITY OF SOILS, 2015, 51 (02) : 207 - 215
  • [7] Community proteogenomics reveals the systemic impact of phosphorus availability on microbial functions in tropical soil
    Yao, Qiuming
    Li, Zhou
    Song, Yang
    Wright, S. Joseph
    Guo, Xuan
    Tringe, Susannah G.
    Tfaily, Malak M.
    Pasa-Tolic, Ljiljana
    Hazen, Terry C.
    Turner, Benjamin L.
    Mayes, Melanie A.
    Pan, Chongle
    NATURE ECOLOGY & EVOLUTION, 2018, 2 (03): : 499 - 509
  • [8] Difference in soil bacterial community composition depends on forest type rather than nitrogen and phosphorus additions in tropical montane rainforests
    Li, Pin
    Shen, Congcong
    Jiang, Lai
    Feng, Zhaozhong
    Fang, Jingyun
    BIOLOGY AND FERTILITY OF SOILS, 2019, 55 (03) : 313 - 323
  • [9] Root associated fungal lineages of a tropical montane forest show contrasting sensitivities to the long-term addition of nitrogen and phosphorus
    Duenas, Juan F.
    Hempel, Stefan
    Homeier, Jurgen
    Suarez, Juan Pablo
    Rillig, Matthias C.
    Camenzind, Tessa
    ENVIRONMENTAL MICROBIOLOGY REPORTS, 2022, 14 (05): : 775 - 784
  • [10] Divergent responses of soil microbial community to long-term nitrogen and phosphorus additions in a subtropical Chinese fir plantation
    Wang, Fangchao
    Liu, Qiao
    Hu, Xiaofei
    Fang, Xiang-Min
    Wang, Shengnan
    Chen, Fu Sheng
    CATENA, 2024, 242