Epilepsy-Net: attention-based 1D-inception network model for epilepsy detection using one-channel and multi-channel EEG signals

被引:18
作者
Lebal, Abdelhamid [1 ,2 ]
Moussaoui, Abdelouahab [3 ]
Rezgui, Abdelmounaam [2 ]
机构
[1] Amar Telidji Univ, Math & Comp Sci Dept, Laghoaut 03000, Algeria
[2] Illinois State Univ, Sch Informat Technol, Campus Box 5150, Normal, IL 61761 USA
[3] Ferhat Abbes Univ, Comp Sci Dept, Setif 19000, Algeria
关键词
Convolutional block attention module; Epileptic seizures; EEG signal; Gated recurrent unit; Residual network; SEIZURE DETECTION; RECOMMENDATION SYSTEM; FEATURE-EXTRACTION; CLASSIFICATION; RECOGNITION; FILTERS; DOMAIN;
D O I
10.1007/s11042-022-13947-0
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we propose and evaluate Epilepsy-Net, a collection of deep learning EEG signal processing tools to detect epileptic seizures against non-epileptic seizures without any handcrafted features extraction. In the Epilepsy-Net model, the 1D-convolutional neural networks (CNN), the recurrent neural network (RNN) and the attention mechanism are combined, where each algorithm is represented by the ResNet and Inception, the gated recurrent unit and the convolutional block attention module respectively; without any handcrafted features. To the best of our knowledge, Epilepsy-Net is the first EEG signal processing work to detect epileptic seizures by combining the attention mechanism with the Inception deep network algorithm.We validate our Epilepsy-Net through several large public EEG signal datasets. The results of our experiments show that the proposed attention deep learning approach is an effective tool for epilepsy detection using EEG signals with high accuracy of 100%, 99.05% and 98.22% for the Bonn EEG dataset, variant of the Bonn EEG dataset, and CHB-MIT dataset, respectively.
引用
收藏
页码:17391 / 17413
页数:23
相关论文
共 77 条
  • [1] Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals
    Acharya, U. Rajendra
    Oh, Shu Lih
    Hagiwara, Yuki
    Tan, Jen Hong
    Adeli, Hojjat
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2018, 100 : 270 - 278
  • [2] AUTOMATED DIAGNOSIS OF EPILEPSY USING CWT, HOS AND TEXTURE PARAMETERS
    Acharya, U. Rajendra
    Yanti, Ratna
    Wei, Zheng Jia
    Krishnan, M. Muthu Rama
    Hong, Tan Jen
    Martis, Roshan Joy
    Min, Lim Choo
    [J]. INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2013, 23 (03)
  • [3] AUTOMATED DIAGNOSIS OF NORMAL AND ALCOHOLIC EEG SIGNALS
    Acharya, U. Rajendra
    Sree, S. Vinitha
    Chattopadhyay, Subhagata
    Suri, Jasjit S.
    [J]. INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2012, 22 (03)
  • [4] APPLICATION OF RECURRENCE QUANTIFICATION ANALYSIS FOR THE AUTOMATED IDENTIFICATION OF EPILEPTIC EEG SIGNALS
    Acharya, U. Rajendra
    Sree, Vinitha S.
    Chattopadhyay, Subhagata
    Yu, Wenwei
    Alvin, Ang Peng Chuan
    [J]. INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2011, 21 (03) : 199 - 211
  • [5] Fractality and a Wavelet-Chaos-Neural Network Methodology for EEG-Based Diagnosis of Autistic Spectrum Disorder
    Ahmadlou, Mehran
    Adeli, Hojjat
    Adeli, Amir
    [J]. JOURNAL OF CLINICAL NEUROPHYSIOLOGY, 2010, 27 (05) : 328 - 333
  • [6] Ahmedt-Aristizabal D, 2018, IEEE ENG MED BIO, P332, DOI 10.1109/EMBC.2018.8512249
  • [7] Discrimination of stroke-related mild cognitive impairment and vascular dementia using EEG signal analysis
    Al-Qazzaz, Noor Kamal
    Ali, Sawal Hamid Bin Mohd
    Ahmad, Siti Anom
    Islam, Mohd Shabiul
    Escudero, Javier
    [J]. MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2018, 56 (01) : 137 - 157
  • [8] Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state
    Andrzejak, RG
    Lehnertz, K
    Mormann, F
    Rieke, C
    David, P
    Elger, CE
    [J]. PHYSICAL REVIEW E, 2001, 64 (06): : 8 - 061907
  • [9] SeizureNet: Multi-Spectral Deep Feature Learning for Seizure Type Classification
    Asif, Umar
    Roy, Subhrajit
    Tang, Jianbin
    Harrer, Stefan
    [J]. MACHINE LEARNING IN CLINICAL NEUROIMAGING AND RADIOGENOMICS IN NEURO-ONCOLOGY, MLCN 2020, RNO-AI 2020, 2020, 12449 : 77 - 87
  • [10] Epileptic seizures identification with autoregressive model and firefly optimization based classification
    Attia, Abdelouahab
    Moussaoui, Abdelouahab
    Chahir, Youssef
    [J]. EVOLVING SYSTEMS, 2021, 12 (03) : 827 - 836