Transformer networks with adaptive inference for scene graph generation

被引:1
|
作者
Wang, Yini [1 ]
Gao, Yongbin [1 ]
Yu, Wenjun [1 ]
Guo, Ruyan [1 ]
Wan, Weibing [1 ]
Yang, Shuqun [1 ]
Huang, Bo [1 ]
机构
[1] Shanghai Univ Engn Sci, Sch Elect & Elect Engn, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
Scene graph generation; Image-to-text translation; Visual relationship detection; Computer vision;
D O I
10.1007/s10489-022-04022-0
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Understanding a visual scene requires not only identifying single objects in isolation but also inferring the relationships and interactions between object pairs. In this study, we propose a novel scene graph generation framework based on Transformer to convert image data into linguistic descriptions characterized as nodes and edges of a graph describing the information of the given image. The proposed model consists of three components. First, we propose an enhanced object detection module with bidirectional long short-term memory (Bi-LSTM) for object-to-object information exchange to generate the classification probabilities for object bounding boxes and classes. Second, we introduce a novel context information capture module containing Transformer layers that outputs object categories containing object context as well as edge information for specific object pairs with context. Finally, since the relationship frequencies follow a long-tailed distribution, an adaptive inference module with a special feature fusion strategy is designed to soften the distribution and perform adaptive reasoning about relationship classification based on the visual appearance of object pairs. We have conducted detailed experiments on three popular open-source datasets, namely, Visual Genome, OpenImages, and Visual Relationship Detection, and have performed ablation experiments on each module, demonstrating significant improvements under different settings and in terms of various metrics.
引用
收藏
页码:9621 / 9633
页数:13
相关论文
共 50 条
  • [1] Transformer networks with adaptive inference for scene graph generation
    Yini Wang
    Yongbin Gao
    Wenjun Yu
    Ruyan Guo
    Weibing Wan
    Shuqun Yang
    Bo Huang
    Applied Intelligence, 2023, 53 : 9621 - 9633
  • [2] Multimodal graph inference network for scene graph generation
    Jingwen Duan
    Weidong Min
    Deyu Lin
    Jianfeng Xu
    Xin Xiong
    Applied Intelligence, 2021, 51 : 8768 - 8783
  • [3] Multimodal graph inference network for scene graph generation
    Duan, Jingwen
    Min, Weidong
    Lin, Deyu
    Xu, Jianfeng
    Xiong, Xin
    APPLIED INTELLIGENCE, 2021, 51 (12) : 8768 - 8783
  • [4] RelTR: Relation Transformer for Scene Graph Generation
    Cong, Yuren
    Yang, Michael Ying
    Rosenhahn, Bodo
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (09) : 11169 - 11183
  • [5] SGTR plus : End-to-End Scene Graph Generation With Transformer
    Li, Rongjie
    Zhang, Songyang
    He, Xuming
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (04) : 2191 - 2205
  • [6] A Novel End-to-End Transformer for Scene Graph Generation
    Ren, Chengkai
    Liu, Xiuhua
    Cao, Mengyuan
    Zhang, Jian
    Wang, Hongwei
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [7] Dynamic Gated Graph Neural Networks for Scene Graph Generation
    Khademi, Mahmoud
    Schulte, Oliver
    COMPUTER VISION - ACCV 2018, PT VI, 2019, 11366 : 669 - 685
  • [8] Scene Adaptive Context Modeling and Balanced Relation Prediction for Scene Graph Generation
    Xu, Kai
    Wang, Lichun
    Li, Shuang
    Gao, Tong
    Yin, Baocai
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2025, 21 (03)
  • [9] Review on scene graph generation methods
    Monesh, S.
    Senthilkumar, N. C.
    MULTIAGENT AND GRID SYSTEMS, 2024, 20 (02) : 129 - 160
  • [10] Scene Graph Generation: A comprehensive survey
    Li, Hongsheng
    Zhu, Guangming
    Zhang, Liang
    Jiang, Youliang
    Dang, Yixuan
    Hou, Haoran
    Shen, Peiyi
    Zhao, Xia
    Shah, Syed Afaq Ali
    Bennamoun, Mohammed
    NEUROCOMPUTING, 2024, 566