Tailbeat perturbations improve swimming efficiency in self-propelled flapping foils

被引:4
|
作者
Chao, Li-Ming [1 ,2 ,3 ]
Jia, Laibing [4 ]
Li, Liang [1 ,2 ,3 ]
机构
[1] Max Planck Inst Anim Behav, Dept Collect Behav, D-78464 Constance, Germany
[2] Univ Konstanz, Ctr Adv Study Collect Behav, D-78464 Constance, Germany
[3] Univ Konstanz, Dept Biol, D-78464 Constance, Germany
[4] Univ Strathclyde, Dept Naval Architecture Ocean & Marine Engn, Glasgow G4 0LZ, Scotland
关键词
swimming/flying; HYDRODYNAMICS; PERFORMANCE; ANIMALS; AIRFOIL; MODEL;
D O I
10.1017/jfm.2024.262
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Recent studies have shown that superimposing rhythmic perturbations to oscillating tailbeats could simultaneously enhance both the thrust and efficiency (Lehn et al., Phys. Rev. Fluids, vol. 2, 2017, p. 023101; Chao et al., PNAS Nexus, vol. 3, 2024, p. 073). However, these investigations were conducted with a tethered flapping foil, overlooking the self-propulsion intrinsic to real swimming fish. Here, we investigate how the high-frequency, low-amplitude superimposed rhythmic perturbations impact the self-propelled pitching and heaving swimming of a rigid foil. The swimming-speed-based Reynolds number ranges from 1400 to 2700 in our study, depending on superimposed perturbations and swimming modes. Numerical results reveal that perturbations significantly increase swimming speeds in both pitching and heaving motions, while enhancing efficiency exclusively in the heaving motion. Further derived scaling laws elucidate the relationships of perturbations with speeds, power costs and efficiency, respectively. These findings not only hypothesise the potential advantages of perturbations in biological systems, but also inspire designs and controls in biomimetic propulsion and manoeuvring within aquatic environments.
引用
收藏
页数:26
相关论文
共 43 条
  • [21] The influence of wall effects on self-propelled performance of brown trout swimming
    Yang, Guang
    Li, Wen-jie
    Du, Hong-bo
    Wan, Yu
    Jia, Rui
    Yang, Sheng-fa
    Zhang, Peng
    PHYSICS OF FLUIDS, 2024, 36 (04)
  • [22] Self-Propelled Swimming of a Flexible Propulsor Actuated by a Distributed Active Moment
    Han, Changhong
    Zhang, Zhiyu
    Zhang, Xing
    FLUIDS, 2023, 8 (01)
  • [23] Self-propelled swimming simulations of bio-inspired smart structures
    Daghooghi, Mohsen
    Borazjani, Iman
    BIOINSPIRATION & BIOMIMETICS, 2016, 11 (05)
  • [24] Numerical investigation on energetically advantageous formations and swimming modes using two self-propelled fish
    Ren, Kai
    Yu, Jiancheng
    Chen, Zhier
    Li, Hongbo
    Feng, Hao
    Liu, Kai
    OCEAN ENGINEERING, 2023, 267
  • [25] Numerical investigation on the swimming mode and stable spacing with two self-propelled fish arranged in tandem
    Ren, Kai
    Yu, Jiancheng
    Li, Hongbo
    Feng, Hao
    OCEAN ENGINEERING, 2022, 259
  • [26] Three-dimensional simulation of a self-propelled fish-like body swimming in a channel
    Zhang, Yanrong
    Kihara, Hisashi
    Abe, Ken-ichi
    ENGINEERING APPLICATIONS OF COMPUTATIONAL FLUID MECHANICS, 2018, 12 (01) : 473 - 492
  • [27] Effects of mass and chordwise flexibility on 2D self-propelled flapping wings
    Olivier, Mathieu
    Dumas, Guy
    JOURNAL OF FLUIDS AND STRUCTURES, 2016, 64 : 46 - 66
  • [28] Self-Propelled Morphing Matter for Small-Scale Swimming Soft Robots
    Huang, Chuqi
    Pinchin, Natalie P.
    Lin, Chia-Heng
    Tejedor, Irving Hafed
    Scarfo, Matthew Gene
    Shahsavan, Hamed
    Pena-Francesch, Abdon
    ADVANCED FUNCTIONAL MATERIALS, 2024,
  • [29] Curvature-based, time delayed feedback as a means for self-propelled swimming
    Gross, David
    Roux, Yann
    Argentina, Mederic
    JOURNAL OF FLUIDS AND STRUCTURES, 2019, 86 : 124 - 134
  • [30] Numerical validation of simple non-stationary models for self-propelled pitching foils
    Fernandez-Feria, R.
    Sanmiguel-Rojas, E.
    Lopez-Tello, P. E.
    OCEAN ENGINEERING, 2022, 260