Artificial intelligence, machine learning, and big data: Improvements to the science of people at work and applications to practice

被引:2
作者
Woo, Sang Eun [1 ,3 ]
Tay, Louis [1 ]
Oswald, Frederick [2 ]
机构
[1] Purdue Univ, Dept Psychol Sci, W Lafayette, IN USA
[2] Rice Univ, Dept Psychol Sci, Houston, TX USA
[3] Purdue Univ, Dept Psychol Sci, 703 Third St, W Lafayette, IN 47907 USA
关键词
artificial intelligence; big data; machine learning; ORGANIZATIONAL RESEARCH; SELF-REPORTS; RECOMMENDATIONS; PSYCHOLOGY; MANAGEMENT; BUSINESS; VALIDITY; PROGRESS; FIELD;
D O I
10.1111/peps.12643
中图分类号
B849 [应用心理学];
学科分类号
040203 ;
摘要
Currently, in the organizational research community, artificial intelligence (AI), machine learning (ML), and big data techniques are being vigorously explored as a set of modern-day approaches contributing to a multidisciplinary science of people at work. This paper discusses more specifically how these sophisticated technologies, methods, and data might together advance the science of people at work through various routes, including improving theory and knowledge, construct measurements, and predicting real-world outcomes. Inspired by the four articles in the current special issue highlighting several of these aspects in essential ways, we also share other possibilities for future organizational research. In addition, we indicate many key practical, ethical, and institutional challenges with research involving AI/ML and big data (i.e., data accessibility, methodological skill gaps, data transparency, privacy, reproducibility, generalizability, and interpretability). Taken together, the opportunities and challenges that lie ahead in the areas of AI and ML promise to reshape organizational research and practice in many exciting and impactful ways.
引用
收藏
页码:1387 / 1402
页数:16
相关论文
共 50 条
  • [21] Big data and machine learning for materials science
    Rodrigues J.F., Jr.
    Florea L.
    de Oliveira M.C.F.
    Diamond D.
    Oliveira O.N., Jr.
    Discover Materials, 1 (1):
  • [22] Roadmap on artificial intelligence and big data techniques for superconductivity
    Yazdani-Asrami, Mohammad
    Song, Wenjuan
    Morandi, Antonio
    De Carne, Giovanni
    Murta-Pina, Joao
    Pronto, Anabela
    Oliveira, Roberto
    Grilli, Francesco
    Pardo, Enric
    Parizh, Michael
    Shen, Boyang
    Coombs, Tim
    Salmi, Tiina
    Wu, Di
    Coatanea, Eric
    Moseley, Dominic A.
    Badcock, Rodney A.
    Zhang, Mengjie
    Marinozzi, Vittorio
    Tran, Nhan
    Wielgosz, Maciej
    Skoczen, Andrzej
    Tzelepis, Dimitrios
    Meliopoulos, Sakis
    Vilhena, Nuno
    Sotelo, Guilherme
    Jiang, Zhenan
    Grosse, Veit
    Bagni, Tommaso
    Mauro, Diego
    Senatore, Carmine
    Mankevich, Alexey
    Amelichev, Vadim
    Samoilenkov, Sergey
    Yoon, Tiem Leong
    Wang, Yao
    Camata, Renato P.
    Chen, Cheng-Chien
    Madureira, Ana Maria
    Abraham, Ajith
    SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2023, 36 (04)
  • [23] Big data requirements for artificial intelligence
    Wang, Sophia Y.
    Pershing, Suzann
    Lee, Aaron Y.
    CURRENT OPINION IN OPHTHALMOLOGY, 2020, 31 (05) : 318 - 323
  • [24] RETRACTED: Application of artificial intelligence and machine learning based on big data analysis in sustainable agriculture (Retracted Article)
    Li, Dongkun
    ACTA AGRICULTURAE SCANDINAVICA SECTION B-SOIL AND PLANT SCIENCE, 2021, 71 (09) : 956 - 969
  • [25] Biotechnology, Big Data and Artificial Intelligence
    Oliveira, Arlindo L.
    BIOTECHNOLOGY JOURNAL, 2019, 14 (08)
  • [26] Artificial Intelligence, Blockchain, Big Data Analytics, Machine Learning and Data Mining in Traditional CRM and Social CRM: A Critical Review
    Lampropoulos, Georgios
    Siakas, Kerstin
    Liana, Julio
    Reinhold, Olaf
    2022 IEEE/WIC/ACM INTERNATIONAL JOINT CONFERENCE ON WEB INTELLIGENCE AND INTELLIGENT AGENT TECHNOLOGY, WI-IAT, 2022, : 504 - 510
  • [27] Machine learning, artificial intelligence, and data science breaking into drug design and neglected diseases
    Pena-Guerrero, Jose
    Nguewa, Paul A.
    Garcia-Sosa, Alfonso T.
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE, 2021, 11 (05)
  • [28] Big Data Analytics, Machine Learning, and Artificial Intelligence in Next-Generation Wireless Networks
    Kibria, Mirza Golam
    Kien Nguyen
    Villardi, Gabriel Porto
    Zhao, Ou
    Ishizu, Kentaro
    Kojima, Fumihide
    IEEE ACCESS, 2018, 6 : 32328 - 32338
  • [29] Applications of artificial intelligence and machine learning approaches in echocardiography
    Nabi, Wafa
    Bansal, Agam
    Xu, Bo
    ECHOCARDIOGRAPHY-A JOURNAL OF CARDIOVASCULAR ULTRASOUND AND ALLIED TECHNIQUES, 2021, 38 (06): : 982 - 992
  • [30] Artificial Intelligence and Machine Learning for Future Army Applications
    Fossaceca, John M.
    Young, Stuart H.
    GROUND/AIR MULTISENSOR INTEROPERABILITY, INTEGRATION, AND NETWORKING FOR PERSISTENT ISR IX, 2018, 10635