Can Interface Layer be Really Free for HfxZr1-xO2 Based Ferroelectric Field-Effect Transistors With Oxide Semiconductor Channel?

被引:11
作者
Cui, Tianning [1 ]
Chen, Danyang [1 ]
Dong, Yulong [1 ]
Fan, Yuyan [1 ]
Yao, Zikang [1 ]
Duan, Hongxiao [1 ]
Liu, Jingquan [2 ]
Liu, Gang [2 ]
Si, Mengwei [2 ]
Li, Xiuyan [2 ]
机构
[1] Shanghai Jiao Tong Univ, Natl Key Lab Micro Nano Fabricat Technol, Shanghai 200240, Peoples R China
[2] Shanghai Jiao Tong Univ, Natl Key Lab Micro & Nano Fabricat Technol, Shanghai 200240, Peoples R China
关键词
Ferroelectric/antiferroelectric HZO; interfacial layer; memory window; MEMORY CHARACTERISTICS; FET;
D O I
10.1109/LED.2024.3355523
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The HfxZr1-xO2 (HZO) based ferroelectric field-effect transistors (FeFETs) with oxide semiconductor channel have been proposed to have the potential of interface layer (IL) free, but the FeFET properties with real IL-free structure has rarely been demonstrated. In this work, we experimentally and theoretically clarified that real IL-free FeFET with ferroelectric (FE) HZO as gate oxide is difficult to get memory window (MW) because the polarization switching is difficult to occur due to insufficient positive charge compensation from oxide channel. In addition, we demonstrate that IL-free FeFETs with antiferroelectric (AFE) HZO provides a solution to get MW through positive subloop which does not require positive charge compensation in polarization changing. And an endurance performance up to 10(9) cycles is achieved in this FeFET structure. Our results provide new insights into engineering of HZO-based FeFET with oxide channel.
引用
收藏
页码:368 / 371
页数:4
相关论文
共 30 条
[1]   Anti-ferroelectric HfxZr1-xO2 Capacitors for High-density 3-D Embedded-DRAM [J].
Chang, Sou-Chi ;
Haratipour, Nazila ;
Shivaraman, Shriram ;
Brown-Heft, Tobias L. ;
Peck, Jason ;
Lin, Chia-Ching ;
Tung, I-Cheng ;
Merrill, Devin R. ;
Liu, Huiying ;
Lin, Che-Yun ;
Hamzaoglu, Fatih ;
Metz, Matthew, V ;
Young, Ian A. ;
Kavalieros, Jack ;
Avci, Uygar E. .
2020 IEEE INTERNATIONAL ELECTRON DEVICES MEETING (IEDM), 2020,
[2]   Understanding and modelling the PBTI reliability of thin-film IGZO transistors [J].
Chasin, A. ;
Franco, J. ;
Triantopoulos, K. ;
Dekkers, H. ;
Rassoul, N. ;
Belmonte, A. ;
Smets, Q. ;
Subhechha, S. ;
Claes, D. ;
van Setten, M. J. ;
Mitard, J. ;
Delhougne, R. ;
Afanas'ev, V ;
Kaczer, B. ;
Kar, G. S. .
2021 IEEE INTERNATIONAL ELECTRON DEVICES MEETING (IEDM), 2021,
[3]   First Demonstration of Ultra-low Dit Top-Gated Ferroelectric Oxide-Semiconductor Memtransistor with Record Performance by Channel Defect Self-Compensation Effect for BEOL-Compatible Non-Volatile Logic Switch [J].
Chen, Chun-Kuei ;
Fang, Zihang ;
Hooda, Sonu ;
Lal, Manohar ;
Chand, Umesh ;
Xu, Zefeng ;
Pan, Jieming ;
Tsai, Shih-Hao ;
Zamburg, Evgeny ;
Thean, Aaron Voon-Yew .
2022 INTERNATIONAL ELECTRON DEVICES MEETING, IEDM, 2022,
[4]   Antiferroelectric Phase Evolution in HfxZr1-xO2 Thin Film Toward High Endurance of Non-Volatile Memory Devices [J].
Chen, Danyang ;
Zhong, Shuman ;
Dong, Yulong ;
Cui, Tianning ;
Liu, Jingquan ;
Si, Mengwei ;
Li, Xiuyan .
IEEE ELECTRON DEVICE LETTERS, 2022, 43 (12) :2065-2068
[5]   Guideline of Device Optimization for Ferroelectric InGaZnO Transistor [J].
Chen, Yu-Hao ;
Wang, I-Ting ;
Zheng, Yue-Min ;
Hou, Tuo-Hung .
2023 7TH IEEE ELECTRON DEVICES TECHNOLOGY & MANUFACTURING CONFERENCE, EDTM, 2023,
[6]   Examination of the Interplay Between Polarization Switching and Charge Trapping in Ferroelectric FET [J].
Deng, Shan ;
Jiang, Zhouhang ;
Dutta, Sourav ;
Ye, Huacheng ;
Chakraborty, Wriddhi ;
Kurinec, Santosh ;
Datta, Suman ;
Ni, Kai .
2020 IEEE INTERNATIONAL ELECTRON DEVICES MEETING (IEDM), 2020,
[7]  
Dünkel S, 2017, INT EL DEVICES MEET
[8]   Logic Compatible High-Performance Ferroelectric Transistor Memory [J].
Dutta, Sourav ;
Ye, Huacheng ;
Khandker, Akif A. ;
Kirtania, Sharadindu Gopal ;
Khanna, Abhishek ;
Ni, Kai ;
Datta, Suman .
IEEE ELECTRON DEVICE LETTERS, 2022, 43 (03) :382-385
[9]  
Florent K, 2018, INT EL DEVICES MEET, DOI 10.1109/IEDM.2018.8614710
[10]  
Ichihara R., 2020, P IEEE S VLSI TECHN, P1, DOI [10.1109/ VLSITechnology18217.2020.9265055, DOI 10.1109/VLSITECHNOLOGY18217.2020.9265055]