On the softplus penalty for large-scale convex optimization

被引:0
作者
Li, Meng [1 ]
Grigas, Paul [1 ]
Atamturk, Alper [1 ]
机构
[1] Univ Calif Berkeley, Dept Ind Engn & Operat Res, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
Convex optimization; Penalty method; Gradient method;
D O I
10.1016/j.orl.2023.10.015
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We study a penalty reformulation of constrained convex optimization based on the softplus penalty function. For strongly convex objectives, we develop upper bounds on the objective value gap and the violation of constraints for the solutions to the penalty reformulations by analyzing the solution path of the reformulation with respect to the smoothness parameter. We use these upper bounds to analyze the complexity of applying gradient methods, which are advantageous when the number of constraints is large, to the reformulation. (c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页码:666 / 672
页数:7
相关论文
共 18 条
[1]   Katyusha: The First Direct Acceleration of Stochastic Gradient Methods [J].
Allen-Zhu, Zeyuan .
STOC'17: PROCEEDINGS OF THE 49TH ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING, 2017, :1200-1205
[2]   Global and fine approximation of convex functions [J].
Azagra, Daniel .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2013, 107 :799-824
[3]   A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems [J].
Beck, Amir ;
Teboulle, Marc .
SIAM JOURNAL ON IMAGING SCIENCES, 2009, 2 (01) :183-202
[4]   Stochastic first-order methods for convex and nonconvex functional constrained optimization [J].
Boob, Digvijay ;
Deng, Qi ;
Lan, Guanghui .
MATHEMATICAL PROGRAMMING, 2023, 197 (01) :215-279
[5]  
Fercoq O, 2019, PR MACH LEARN RES, V97
[6]  
GULER O, 1995, SIAM J MATRIX ANAL A, V16, P688
[7]   An optimal randomized incremental gradient method [J].
Lan, Guanghui ;
Zhou, Yi .
MATHEMATICAL PROGRAMMING, 2018, 171 (1-2) :167-215
[8]   Iteration-complexity of first-order penalty methods for convex programming [J].
Lan, Guanghui ;
Monteiro, Renato D. C. .
MATHEMATICAL PROGRAMMING, 2013, 138 (1-2) :115-139
[9]  
Li M., 2022, ARXIV
[10]  
Lin H, 2015, ADV NEUR IN, V28