共 50 条
Bifunctional S-scheme CdSSe/Bi2WO6 heterojunction catalysts exhibit generalized boosting performance in photocatalytic degradation of tetracycline hydrochloride, photoelectrochemical and electrocatalytic hydrogen production
被引:27
|作者:
Yang, Shuai
[1
]
Yang, Han
[2
]
Zhang, Jun
[1
,3
]
Lin, Jiacen
[1
]
Lu, Guoyu
[1
]
Zhang, Yujia
[1
]
Xi, Junhua
[1
]
Kong, Zhe
[1
]
Song, Lihui
[4
,5
]
Xie, Haijiao
[6
]
机构:
[1] Hangzhou Dianzi Univ, Coll Mat & Environm Engn, New Energy Mat Res Ctr, Hangzhou 310018, Peoples R China
[2] Hubei Univ Arts & Sci, Sch Phys & Elect Engn, Xiangyang 441053, Peoples R China
[3] Hangzhou Dianzi Univ, Key Lab Novel Mat Sensor Zhejiang Prov, Hangzhou 310018, Peoples R China
[4] Zhejiang Univ, Inst Adv Semicond, Hangzhou 311200, Zhejiang, Peoples R China
[5] Zhejiang Univ, ZJU Hangzhou Global Sci & Technol Innovat Ctr, Zhejiang Prov Key Lab Power Semicond Mat & Devices, Hangzhou 311200, Zhejiang, Peoples R China
[6] Hangzhou Yanqu Informat Technol Co Ltd, Y2,2nd Floor,Bldg 2,Xixi Legu Creat Pioneering Pk,, Hangzhou 310003, Peoples R China
基金:
中国国家自然科学基金;
关键词:
S;
-scheme;
Photocatalysis;
Photoelectrochemistry;
Electrocatalysis;
CdSSe/Bi2WO6;
VISIBLE-LIGHT-DRIVEN;
OXYGEN VACANCY;
EVOLUTION;
ENERGY;
WATER;
TIO2;
NANOSHEETS;
HETEROSTRUCTURE;
NANOMATERIALS;
GENERATION;
D O I:
10.1016/j.jallcom.2023.173306
中图分类号:
O64 [物理化学(理论化学)、化学物理学];
学科分类号:
070304 ;
081704 ;
摘要:
In this work, by a simple method of hydrothermal synthesis, the CdSSe/Bi2WO6 S-scheme heterojunction catalyst is successfully obtained and the results are verified by XPS, EPR, band structure, etc. The S-scheme heterojunction can maintain the strong redox potential energy position of both catalysts, and adjust the electron transfer path to improve the electron-hole separation efficiency, and thus improve the charge transfer efficiency. CdSSe has a high conduction band (-1.13 eV) and a narrow bandgap width (1.59 eV), exhibiting good light absorption characteristics and reduction ability; the valence band position of Bi2WO6 is much low (2.58 eV), indicating good oxidation activity. This heterojunction has excellent oxidation and reduction capabilities and exhibits multifunctional catalysts. Its photocatalytic degradation ability of tetracycline hydrochloride is 2.2 times that of the original CdSSe, while its photoelectrochemical activity is 11 times that of CdSSe, reaching a photocurrent density of - 2.081 mA/cm2 at 0 V (vs. RHE). The electrocatalytic activity of its hydrogen evolution has also been enhanced. This study developed a design strategy for a novel bifunctional S-scheme heterojunction catalyst.
引用
收藏
页数:13
相关论文