An inexact algorithm for stochastic variational inequalities

被引:0
作者
Buscaglia, Emelin L. [1 ,3 ]
Lotito, Pablo A. [2 ,4 ]
Parente, Lisandro A. [1 ,3 ]
机构
[1] Univ Nacl Rosario, Fac Ciencias Exactas Ingn & Agrimensura, Ave Pellegrini 250, RA-2000 Rosario, Argentina
[2] Univ Nacl Ctr Prov Buenos Aires, Fac Ciencias Exactas, PLADEMA, Pinto 399, RA-7000 Tandil, Argentina
[3] Consejo Nacl Invest Cient & Tecn, CIFASIS, UNR, Bv 27 Febrero 210 Bis, RA-2000 Rosario, Argentina
[4] Consejo Nacl Invest Cient & Tecn, Buenos Aires, Argentina
关键词
Stochastic variational inequalities; Progressive hedging algorithm; Proximal point algorithm; PROXIMAL POINT ALGORITHM; MONOTONE-OPERATORS; EXTRAGRADIENT; OPTIMIZATION; ENLARGEMENT;
D O I
10.1016/j.orl.2023.107064
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We present a new Progressive Hedging Algorithm to solve Stochastic Variational Inequalities in the formulation introduced by Rockafellar and Wets in 2017, allowing the generated subproblems to be approximately solved with an implementable tolerance condition. Our scheme is based on Hybrid Inexact Proximal Point methods and generalizes the exact algorithm developed by Rockafellar and Sun in 2019, providing stronger convergence results. We also show some numerical experiments in two-stage Nash games. (c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:8
相关论文
共 28 条
[1]  
[Anonymous], 1972, PhD Thesis
[2]   Enlargement of monotone operators with applications to variational inequalities [J].
Burachik, RS ;
Iusem, AN ;
Svaiter, BF .
SET-VALUED ANALYSIS, 1997, 5 (02) :159-180
[3]   A variable metric proximal point algorithm for monotone operators [J].
Burke, JV ;
Qian, M .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1999, 37 (02) :353-375
[4]   Two-stage stochastic variational inequalities: an ERM-solution procedure [J].
Chen, Xiaojun ;
Pong, Ting Kei ;
Wets, Roger J-B. .
MATHEMATICAL PROGRAMMING, 2017, 165 (01) :71-111
[5]   STOCHASTIC VARIATIONAL INEQUALITIES: RESIDUAL MINIMIZATION SMOOTHING SAMPLE AVERAGE APPROXIMATIONS [J].
Chen, Xiaojun ;
Wets, Roger J-B ;
Zhang, Yanfang .
SIAM JOURNAL ON OPTIMIZATION, 2012, 22 (02) :649-673
[6]   Expected residual minimization method for stochastic linear complementarity problems [J].
Chen, XJ ;
Fukushima, M .
MATHEMATICS OF OPERATIONS RESEARCH, 2005, 30 (04) :1022-1038
[7]   Coupling the proximal point algorithm with approximation methods [J].
Cominetti, R .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1997, 95 (03) :581-600
[8]  
Dontchev AL, 2009, SPRINGER MONOGR MATH, P1, DOI 10.1007/978-0-387-87821-8_1
[9]   Approximate iterations in Bregman-function-based proximal algorithms [J].
Eckstein, J .
MATHEMATICAL PROGRAMMING, 1998, 83 (01) :113-123
[10]  
Facchinei F., 2003, FINITE DIMENSIONAL V, DOI DOI 10.1007/B97544