Enhancing oxygen exchange kinetics of solid oxide fuel cell cathode: Unleashing the potential of higher order Ruddlesden-Popper phase surface modification

被引:3
|
作者
Saher, Saim [1 ]
Tan, Chou Yong [1 ,2 ,10 ]
Ramesh, S. [1 ,2 ,9 ]
Yap, Boon Kar [3 ,7 ,8 ]
Ong, Boon Hoong [4 ]
Al-Furjan, M. S. H. [5 ,6 ]
机构
[1] Univ Malaya, Fac Engn, Dept Mech Engn, Kuala Lumpur 50603, Malaysia
[2] Univ Malaya, Fac Engn, Ctr Adv Mfg & Mat Proc AMMP, Kuala Lumpur 50603, Malaysia
[3] Univ Tenaga Nas, Coll Engn, Elect & Commun Dept, Kajang 43000, Selangor, Malaysia
[4] Univ Malaya, Nanotecnol & Catalysis Res Ctr, Kuala Lumpur 50603, Malaysia
[5] Nanjing Univ Aeronaut & Astronaut, State Key Lab Mech & Control Mech Struct, Nanjing 210016, Peoples R China
[6] Zhejiang Univ Technol, Collaborat Innovat Ctr High End Laser Mfg Equipmen, Hangzhou 310023, Peoples R China
[7] Univ Tenaga Nas, Inst Sustainable Energy, Kajang 43000, Selangor, Malaysia
[8] South China Univ Technol, Int Sch Adv Mat, 381 Wushan Rd,Tianhe Dist, Guangzhou, Guangdong, Peoples R China
[9] Univ Tenaga Nas, Coll Engn, Kajang 43000, Selangor, Malaysia
[10] Univ Malaya, Fac Engn, Dept Mech Engn, Block L, Kuala Lumpur 50603, Malaysia
关键词
Perovskite structure; Ruddlesden-popper phase; Mixed conducting oxides; Oxygen surface kinetics; SOFC cathode; COMPOSITE CATHODE; ELECTROCHEMICAL CHARACTERISTICS; REDUCTION REACTION; THIN-FILM; TEMPERATURE; PERFORMANCE; TRANSPORT; ELECTRODE; CONDUCTIVITY; OPTIMIZATION;
D O I
10.1016/j.jpowsour.2023.233607
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Tailoring the electrode surface represents a promising strategy to enhance electrochemical performance while preserving base material integrity. Achieving appropriate surface coverage with catalytic active oxide material is critical for efficient oxygen transport at the triple phase boundary (TPB). To further explore this approach, the perovskite structure La0.6Sr0.4Co0.2Fe0.8O3-delta (LSCF) is decorated with a higher order Ruddlesden-Popper phase Pr4Ni3O10+delta (PNO). This combination is being investigated using electrical conductivity relaxation (ECR) technique to study the oxygen exchange kinetics. Samples with varying surface coverage of PNO are examined in a temperature range of 650 degrees C-850 degrees C, with a step change in pO2 between 0.1 atm and 0.21 atm. The chemical diffusion coefficient, Dchem, remains invariant across all the samples, however, the surface exchange coefficient, kchem, varies with the surface coverage of PNO. Notably, the coated sample with a PNO loading content of 0.28 mg cm-2, referred to as PNO5, demonstrates a significant enhancement of nearly two orders of magnitude in kchem compared to bare LSCF at 650 degrees C. This substantial improvement is ascribed to the increased active sites of ORR within the TPB region and the facilitated electron access through tunneling from LSCF to the coated phase. Pulse isotopic exchange (PIE) measurements on the fractionated powders confirm the fast surface exchange kinetics of PNO. Such remarkable oxygen exchange characteristics encourage the use of PNO, along with LSCF, as potential candidates for SOFC cathodes.
引用
收藏
页数:13
相关论文
共 37 条
  • [31] A way to limit the long-term degradation of solid oxide fuel cell cathode by decorating the surface with K2NiF4-Structure Pr4Ni3O10+δ phase
    Saher, Saim
    Tan, Chou Yong
    Ramesh, S.
    Yap, Boon Kar
    Ong, Boon Hoong
    Mo, Kim Hung
    Al-Furjan, M. S. H.
    JOURNAL OF POWER SOURCES, 2024, 592
  • [32] Strontium-free Ruddlesden-Popper cuprates (La1.7Ca0.3Cu0.75M0.25O4+s, M = Fe, Co, Ni) as cathode materials for high-performance solid oxide fuel cells
    Shin, Seoyoon
    Huang, Xiubing
    Oh, Mi Young
    Ye, Youn Jin
    Lee, Jinwoo
    Irvine, John T. S.
    Lee, Seokhee
    Shin, Tae Ho
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2025, 45 (05)
  • [33] Influence of the grain size of samaria-doped ceria cathodic interlayer for enhanced surface oxygen kinetics of low-temperature solid oxide fuel cell
    Bae, Jiwoong
    Hong, Soonwook
    Koo, Bongjun
    An, Jihwan
    Prinz, Fritz B.
    Kim, Young-Beom
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2014, 34 (15) : 3763 - 3768
  • [34] Optimizing Ruddlesden-Popper perovskite anodes, La0.6Sr1.4Mn0.9X0.1O4 (X = Ni and Fe) for solid oxide fuel cell application: A comparative study on structural, morphological, and electrochemical performance
    Zainon, Ainaa Nadhirah
    Baharuddin, Nurul Akidah
    Bahrain, Audi Majdan Kamarul
    Somalu, Mahendra Rao
    Ali, S. A. Muhammed
    CERAMICS INTERNATIONAL, 2025, 51 (06) : 7742 - 7755
  • [35] Pioneering fast oxygen reduction reaction kinetics in Nd2-xSr2xNiO4 cathode for low-temperature solid oxide fuel cell
    Lu, Yuzheng
    Noor, Asma
    Alwadie, Najah
    Gouadria, Soumaya
    Nazar, Atif
    Akbar, Muhammad
    Akhtar, Majid Niaz
    Shah, M. A. K. Yousaf
    Mushtaq, Naveed
    Yousaf, Muhammad
    CERAMICS INTERNATIONAL, 2024, 50 (18) : 32964 - 32971
  • [36] Effects of chromium poisoning on the long-term oxygen exchange kinetics of the solid oxide fuel cell cathode materials La0.6Sr0.4CoO3 and Nd2NiO4
    Yang, Min
    Bucher, Edith
    Sitte, Werner
    JOURNAL OF POWER SOURCES, 2011, 196 (17) : 7313 - 7317
  • [37] Electrical behavior of the Ruddlesden-Popper phase, (Nd0.9La0.1)2 Ni0.75Cu0.25O4 (NLNC) and NLNC- x wt% Sm0.2Ce0.8O1.9 (SDC) (x=10, 30 and 50), as intermediate-temperature solid oxide fuel cells cathode
    Shirani-Faradonbeh, Hassan
    Paydar, Mohammad Hossein
    CERAMICS INTERNATIONAL, 2018, 44 (02) : 1971 - 1977