Improved Representation of Groundwater-Surface Water Interactions Using SWAT plus gwflow and Modifications to the gwflow Module

被引:6
|
作者
Yimer, Estifanos Addisu [1 ]
Bailey, Ryan T. [2 ]
Piepers, Lise Leda [1 ]
Nossent, Jiri [1 ,3 ]
Van Griensven, Ann [1 ,4 ]
机构
[1] Vrije Univ Brussels, Dept Hydrol & Hydraul Engn, B-1050 Brussels, Belgium
[2] Colorado State Univ, Dept Civil & Environm Engn, Ft Collins, CO 80523 USA
[3] Flanders Hydraul Res, B-2140 Antwerp, Belgium
[4] IHE Delft Inst Water Educ, Dept Water Sci & Engn, NL-2700 Delft, Netherlands
关键词
ground-surface water interaction; groundwater-soil interaction; geohydrological modeling; inter-model comparison; SWAT plus; gwflow; Dijle; Belgium; HYDROLOGIC-MODELS; SOIL; CALIBRATION; STREAM; PERMEABILITY; SUBSURFACE; DISCHARGE; BEDROCK; PLAIN;
D O I
10.3390/w15183249
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Recent water availability and scarcity problems have highlighted the importance of surface-groundwater interactions. Thus, groundwater models are coupled with surface water models. However, this solution is complex, needing code modifications and long computation times. Recently, a new groundwater module (gwflow) was developed directly inside the SWAT code to tackle these issues. This research assesses gwflow's capabilities in representing surface-groundwater system interactions in the Dijle catchment (892.54 km(2)), a groundwater-driven watershed in Belgium. Additional developments were made in SWAT+gwflow to represent the interaction between the groundwater and soil (gwsoil). The model was calibrated for monthly mean streamflow at the catchment outlet (1983 to 1996) and validated for two periods (validation 1: 1975 to 1982 and validation 2: 1997 to 2002). It was found that the SWAT+gwflow model is better at representing the total flow (NSE of 0.6) than the standalone SWAT+ (NSE of 0.4). This was confirmed during two validation periods where the standalone model scored unsatisfactory monthly NSE (0.6 and 0.1), while the new model's NSE was 0.7 and 0.5. Additionally, the SWAT+gwflow model simulations better depict the groundwater via baseflow and attain proper water balance values. Thus, in a highly groundwater-driven catchment, the simplified representation of groundwater systems by the standalone SWAT+ model has pitfalls. In addition, the modification made to the gwflow module (gwsoil) improved the model's performance, which, without such adjustment, overestimates the streamflow via saturation excess flow. When including the gwsoil mechanism, thereby providing a more accurate representation of water storage and movement, groundwater is transferred to the soil profile, increasing the overall soil water content and thereby increasing lateral flow. This novel modification can also have implications for other distributed hydrological models to consider such exchanges in their modeling scheme.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Regional evaluation of groundwater-surface water interactions using a coupled geohydrological model (SWAT+gwflow)
    Yimer, Estifanos Addisu
    Bailey, Ryan T.
    Van Schaeybroeck, Bert
    van de Vyver, Hans
    Villani, Lorenzo
    Nossent, Jiri
    van Griensven, Ann
    JOURNAL OF HYDROLOGY-REGIONAL STUDIES, 2023, 50
  • [2] Enhancing SWAT plus simulation of groundwater flow and groundwater-surface water interactions using MODFLOW routines
    Bailey, Ryan T.
    Park, Seonggyu
    Bieger, Katrin
    Arnold, Jeffrey G.
    Allen, Peter M.
    ENVIRONMENTAL MODELLING & SOFTWARE, 2020, 126
  • [3] Modeling groundwater-surface water interactions using the Dupuit approximation
    Anderson, EI
    ADVANCES IN WATER RESOURCES, 2005, 28 (04) : 315 - 327
  • [4] Groundwater-surface water interactions in Canada PREFACE
    Larocque, Marie
    Broda, Stefan
    Canadian Water Resources Journal, 2016, 41 (04) : 451 - 454
  • [5] A review on using heat as a tool for studying groundwater-surface water interactions
    Ren, Jie
    Cheng, Jiaqiang
    Yang, Jie
    Zhou, Yinjun
    ENVIRONMENTAL EARTH SCIENCES, 2018, 77 (22)
  • [6] Comparison of two modeling approaches for groundwater-surface water interactions
    Guay, C.
    Nastev, M.
    Paniconi, C.
    Sulis, M.
    HYDROLOGICAL PROCESSES, 2013, 27 (16) : 2258 - 2270
  • [7] Observations on groundwater-surface water interactions at River Vantaa, Finland
    Korkka-Niemi, Kirsti
    Kivimaki, Anna-Liisa
    Lahti, Kirsti
    Nygard, Maria
    Rautio, Anne
    Salonen, Veli-Pekka
    Pellikka, Petri
    MANAGEMENT OF ENVIRONMENTAL QUALITY, 2012, 23 (02) : 222 - 231
  • [8] Groundwater-Surface Water Interactions: Recent Advances and Interdisciplinary Challenges
    Lewandowski, Joerg
    Meinikmann, Karin
    Krause, Stefan
    WATER, 2020, 12 (01)
  • [9] Hyporheic hydrology: interactions at the groundwater-surface water interface Preface
    Krause, S.
    Hannah, D. M.
    Fleckenstein, J. H.
    HYDROLOGICAL PROCESSES, 2009, 23 (15) : 2103 - 2107
  • [10] Effects of microtopography on patterns and dynamics of groundwater-surface water interactions
    Lu, Zheng
    Yang, Xiaofan
    ADVANCES IN WATER RESOURCES, 2024, 188