Fast and robust quantification of uncertainty in non-linear diffusion MRI models

被引:1
|
作者
Harms, R. L. [1 ]
Fritz, F. J. [1 ]
Schoenmakers, S. [1 ]
Roebroeck, A. [1 ]
机构
[1] Maastricht Univ, Fac Psychol & Neurosci, Dept Cognit Neurosci, Maastricht, Netherlands
基金
欧洲研究理事会;
关键词
Uncertainty estimates; Variances; Diffusion MRI; Microstructure; Fisher Information Matrix (FIM); Cramer Rao Lower Bound (CRLB); ORIENTATION DISPERSION; FIBER ORIENTATION; WILD BOOTSTRAP; OPTIMIZATION; FRAMEWORK; DENSITY; ACCELERATION; PARAMETERS; PRECISION; INFERENCE;
D O I
10.1016/j.neuroimage.2023.120496
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Diffusion MRI (dMRI) allows for non-invasive investigation of brain tissue microstructure. By fitting a model to the dMRI signal, various quantitative measures can be derived from the data, such as fractional anisotropy, neurite density and axonal radii maps. We investigate the Fisher Information Matrix (FIM) and uncertainty propagation as a generally applicable method for quantifying the parameter uncertainties in linear and nonlinear diffusion MRI models. In direct comparison with Markov Chain Monte Carlo (MCMC) sampling, the FIM produces similar uncertainty estimates at much lower computational cost. Using acquired and simulated data, we then list several characteristics that influence the parameter variances, including data complexity and signal-to-noise ratio. For practical purposes we investigate a possible use of uncertainty estimates in decreasing intra-group variance in group statistics by uncertainty-weighted group estimates. This has potential use cases for detection and suppression of imaging artifacts.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Fitting of non-linear models to characterize the growth of five zebu cattle breeds
    Dominguez-Viveros, Joel
    Alonso Rodriguez-Almeida, Felipe
    Nelson Aguilar-Palma, Gudalupe
    Castillo-Rangel, Francisco
    Fernando Saiz-Pineda, Juan
    Villegas-Gutierrez, Cesar
    LIVESTOCK SCIENCE, 2020, 242
  • [42] Non-linear diffusion model for optimization of leather manufacturing: Lime extraction from calcimine
    Kolomaznik, Karel
    Fuerst, Tomas
    Barinova, Michaela
    CHEMICAL ENGINEERING SCIENCE, 2010, 65 (02) : 780 - 785
  • [43] ADJOINT METHOD OF PARAMETER IDENTIFICATION FOR SOME NON-LINEAR REACTION-DIFFUSION SYSTEMS
    Jiang Cheng-shun
    Liu Chao
    Shen Yong-ming
    JOURNAL OF HYDRODYNAMICS, 2005, 17 (01) : 80 - 86
  • [44] Evaluation of non-linear growth curve models in the Vietnamese indigenous Mia chicken
    Thinh Nguyen Hoang
    Do, Huong T. T.
    Bui, Doan H.
    Pham, Dang K.
    Hoang, Tuan A.
    Do, Duy N.
    ANIMAL SCIENCE JOURNAL, 2021, 92 (01)
  • [45] Parameter estimation in non-linear models of pressure dynamics in CNG injection systems
    Lino, Paolo
    Maione, Guido
    Kapetina, Mirna N.
    Rapaic, Milan R.
    2015 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY (ICIT), 2015, : 399 - 404
  • [46] Conceptual Stormwater Quality Models by Alternative Linear and Non-linear Formulations: an Event-Based Approach
    Sandoval, Santiago
    Bertrand-Krajewski, Jean-Luc
    Pena-Heredia, Felipe
    ENVIRONMENTAL MODELING & ASSESSMENT, 2022, 27 (05) : 817 - 830
  • [47] A diffusion MRI model for random walks confined on cylindrical surfaces: towards non-invasive quantification of myelin sheath radius
    Canales-Rodriguez, Erick J.
    Tax, Chantal M. W.
    Fischi-Gomez, Elda
    Jones, Derek K.
    Thiran, Jean-Philippe
    Rafael-Patino, Jonathan
    FRONTIERS IN PHYSICS, 2025, 13
  • [48] Air-puff associated quantification of non-linear biomechanical properties of the human cornea in vivo
    Roy, Abhijit Sinha
    Kurian, Mathew
    Matalia, Himanshu
    Shetty, Rohit
    JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS, 2015, 48 : 173 - 182
  • [49] Non-linear spherical collapse in tachyon models and a comparison of collapse in tachyon and quintessence models of dark energy
    Rajvanshi, Manvendra Pratap
    Bagla, J. S.
    CLASSICAL AND QUANTUM GRAVITY, 2020, 37 (23)
  • [50] Robust GMDH-type neural network with unscented Kalman filter for non-linear systems
    Masoumnezhad, M.
    Jamali, A.
    Nariman-zadeh, N.
    TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2016, 38 (08) : 992 - 1003